CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(04): 359-365
DOI: 10.4103/wjnm.WJNM_23_20
Original Article

Comparison of posttherapy 90Y positron emission tomography/computed tomography dosimetry methods in liver therapy with 90Y microspheres

Karin Knesaurek
Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
› Author Affiliations

Abstract

The aim of our study was to compare dosimetry methods for yttrium-90 (90Y) positron emission tomography/computed tomography (PET/CT). Twenty-five patients were taken to a PET/CT suite following therapy with 90Y microspheres. The low mA, nondiagnostic CT images were used for attenuation correction and localization of the 90Y microspheres. The acquisition time was 15 min, the reconstruction matrix size was 200 mm × 200 mm × 75 mm, and voxel size was 4.07 mm × 4.07 mm × 3.00 mm. Two software packages, MIM 6.8 and Planet Dose, were utilized to calculate 90Y dosimetry. Three methods were used for voxel-based dosimetry calculations: the local deposition method (LDM), LDM with scaling (LDMwS) for known injected activity, and a dose point kernel (DPK) method using the MIRD kernel. Only the DPK approach was applied to the Planet Dose software. LDM and LDMwS were only applied to the MIM software. The average total liver dosimetry values (mean ± standard deviation) were 60.93 ± 28.62 Gy, 53.59 ± 23.47 Gy, 55.33 ± 24.80 Gy, and 54.25 ± 23.70 Gy for LDMwS, LDM, DPK with MIM, and DPK with Planet Dose (DOSI), respectively. In most cases, the LDMwS method produced slightly higher dosimetry values than the other methods. The MIM and Planet Dose DPK dosimetry values (i.e., DPK vs. DOSI) were highly comparable. Bland–Altman analysis calculated a mean difference of 1.1 ± 2.2 Gy. The repeatability coefficient was 4.4 (7.9% of the mean). The MIM and Planet Dose DPK dosimetry values were practically interchangeable. 90Y dosimetry values obtained by all methods were similar, but LDMwS tended to produce slightly higher values.

Financial support and sponsorship

Nil.




Publication History

Received: 13 May 2020

Accepted: 17 May 2020

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Lobo L, Yakoub D, Picado O, Ripat C, Pendola F, Sharma R, et al. Unresectable hepatocellular carcinoma: Radioembolization versus chemoembolization: A systematic review and meta-analysis. Cardiovasc Intervent Radiol 2016;39:1580-8.
  • 2 Sucandy I, Cheek S, Golas BJ, Tsung A, Geller DA, Marsh JW. Long term survival outcomes of patients undergoing treatment with radiofrequency ablation for hepatocellular carcinoma and metastatic colorectal cancer liver tumors. HPB J Int Hepato Pancreato Biliary Assoc 2016;18:756-63.
  • 3 Paprottka PM, Hoffmann RT, Haug A, Sommer WH, Raessler F, Trumm CG, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol 2012;35:334-42.
  • 4 Hilgard P, Hamami M, El Fouly A, Scherag A, Müller S, Ertle J, et al. Radioembolization With yttrium-90 Glass Microspheres in Hepatocellular Carcinoma: European Experience on Safety and Long-Term Survival. Hematology 2010;52:1741-9.
  • 5 Garin E, Rolland Y, Laffont S, Edeline J. Clinical impact of (99m) Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur J Nucl Med Mol Imaging 2016;43:559-75.
  • 6 The Package Insert for SIR-Spheres® Y-90 resin microspheres. Sirtex Medical Limited; 2018. Available from: https://www.sirtex.com/media/155127/pi-ec-12.pdf. [Last accessed on 2020 Apr 03].
  • 7 TheraSphere Package Insert. BTG; 2018. Available from: https://www.btg-im.com/BTG/media/TheraSphere-Documents/PDF/TheraSphere-Package-Insert_USA_Rev-14.pdf. [Last accessed on 2019 Mar 15].
  • 8 Knešaurek K, Kim E, Livnat U, Eldib M, Fayad Z, Kostakoglu L. Comparison of Y-90 dosimetry derived from post-therapy PET/CT and PET/MRI imaging. J Nucl Med 2016;57:1294.
  • 9 Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S, et al. Gastrointestinal complications associated with hepatic arterial Yttrium-90 microsphere therapy. J Vasc Interv Radiol 2007;18:553-61.
  • 10 Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: A comprehensive literature review. J Vasc Interv Radiol 2009;20:1121-30.
  • 11 Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging 2012;39:309-15.
  • 12 Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with Y-90 microspheres: The experience of the National Cancer Institute of Milan. Q J Nucl Med Mol Imaging 2011;55:168-97.
  • 13 Knešaurek K, Tuli A, Kim E, Kostakoglu L. Comparison of Y-90 dosimetry derived from post-therapy PET/CT and bremsstrahlung SPECT imaging. J Nucl Med 2016;57:1893.
  • 14 Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and bremsstrahlung SPECT for imaging in vivo Yttrium-90 microsphere distribution after liver radioembolization. PLoS One 2013;8:E55742.
  • 15 Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular Carcinoma Tumor Dose Response After < sup> 90</sup> Y-radioembolization With Glass Microspheres Using < sup> 90</sup> Y-SPECT/CT-Based Voxel Dosimetry. Int J Radiat Oncol Biol Phys 2018;102:451-61.
  • 16 Levillain H, Derijckere ID, Marin G, Guiot T, Vouche M, Reynaert N, et al. Y-90-PET/CT based dosimetry after selective internal radiation therapy predicts outcome in patients with liver metastases from colorectal cancer. EJNMMI Res 2018;8:1-9.
  • 17 Knešaurek K, Tuli A, Kim E, Heiba S, Kostakoglu L. Comparison of PET/CT and PET/MR imaging and dosimetry of yttrium-90 (Y-90) in patients with unresectable hepatic tumors who have received intra-arterial radioembolization therapy with Y-90 microspheres. EJNMMI Phys 2018;5:23.
  • 18 Goedicke A, Berker Y, Verburg FA, Behrend FF, Winz O, Mottaghy FM. Study-parameter impact in quantitative 90-Yttrium PETimaging for radioembolization treatment monitoring and dosimetry. IEEE Trans Med Imaging 2013;32:485-92.
  • 19 Carlier T, Willowson KP, Fourkal E, Bailey DL, Doss M, Conti M. Y-90 -PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction. Med Phys 2015;42:4295-309.
  • 20 Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative Y-90 PET/CT for dosimetric purposes after radioembolization with resin microspheres: The QUEST Phantom Study. Eur J Nucl Med Mol Imaging 2015;42:1202-22.
  • 21 Kafrouni M, Allimant C, Fourcade M, Vauclin S, Delicque J, Ilonca AD, et al. Retrospective voxel-based dosimetry for assessing the body surface area model ability to predict delivered dose and radioembolization outcome. J Nucl Med 2018;59:1289-95.
  • 22 Dieudonné A, Hobbs RF, Lebtahi R, Maurel F, Baechler S, Wahl RL, et al. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: Comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med 2013;54:236-43.
  • 23 Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet no. 17: The dosimetry of nonuniform activity distributions – Radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S-36S.
  • 24 Maughan NM, Eldib M, Conti M, Knešaurek K, Faul D, Parikh PJ, et al. Phantom study to determine optimal PET reconstruction parameters for PET/MR imaging of Y-90 microspheres following radioembolization. Biomed Phys Eng Express 2016;2:15009.
  • 25 Passing H, Bablok W. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part I. J Clin Chem Clin Biochem 1983;21:709-20.
  • 26 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;327:307-10.
  • 27 Precision of Test Methods. I: Guide for the Determination and Reproducibility for a Standard Test Method. London, U.K.: British Standards Institution; 1976. p. 54-97.
  • 28 Knešaurek K, Heiba S, Pyzik R, Pasik SD, Kostakoglu L. An estimate of Y-90 dosimetry for bremsstrahlung SPECT/CT imaging. J Nucl Med 2019;60 Suppl 1:124.
  • 29 Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorf S, et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolution neural networks. Radiology 2020;294:445-52.
  • 30 Nelson A, Swallen A, Dewaraja Y. Evaluation of voxel-based yttrium-90 (Y-90) dose calculation methods for Y-90 PET using a liver phantom. J Nucl Med 2016; 57 Suppl 2:1424.