CC BY-NC-ND 4.0 · World J Nucl Med 2021; 20(01): 54-60
DOI: 10.4103/wjnm.WJNM_49_20
Original Article

Outcomes following I-131 treatment with cumulative dose exceeding or equal to 600 mCi in differentiated thyroid carcinoma patients

Chalermrat Kaewput
Department of Radiology, Division of Nuclear Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
,
Pawana Pusuwan
Department of Radiology, Division of Nuclear Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
› Author Affiliations

Abstract

To evaluate treatment outcomes following radioactive iodine (RAI) treatment with a cumulative dose of ≥≥600 mCi in differentiated thyroid carcinoma (DTC) patients, a retrospective review of medical records was done in 176 DTC patients with a cumulative dose of ≥600 mCi from January 1993 to December 2013. All patients were followed up for at least 2 years after receiving 600 mCi of I-131 treatment. Remission criteria were no clinical and imaging evidence of disease and low serum thyroglobulin levels during thyroid-stimulating hormone suppression of <0.2 ng/ml or of <1 ng/ml after stimulation in the absence of interfering antibodies. A total of 176 patients were included in the study: 137 – papillary thyroid cancer, 29 – follicular thyroid cancer, 9 – mixed papillary and follicular thyroid cancer, and 1 – Hurthle cell carcinoma. Most of the patients (118, 67%) had locoregional metastasis, whereas 48 patients (27%) had distant metastases at presentation. The median cumulative dose was 900 mCi (range: 600–2200 mCi). The mean follow-up period was 82.84 ± 42.41 months. Only 16 patients (9.1%) met remission criteria at the end of treatment. The rest of patients (160, 90.9%) were not remitted: stable disease in 94 (53.4%), at least 1 metastasis without I-131 uptake in 34 (19.3%), progressive disease in 21 (11.9%), and death during the whole follow-up period in 11 (6.3%). Two patients (1.1%) developed second primary malignancy. Eighteen cases were suspected of bone marrow suppression (14 cases [7.9%] had anemia and 5 cases [2.8%] had neutropenia). Seven patients (3.9%) developed permanent salivary gland dysfunction. Although the complications after receiving RAI treatment with a cumulative dose of ≥≥600 mCi were low and not severe, the patients with remission were in <10%. Our study suggests that the decision to administer further treatments should be made on an individual basis because beneficial effects may be controversial.

Financial support and sponsorship

Nil.




Publication History

Received: 18 June 2020

Accepted: 26 June 2020

Article published online:
30 March 2022

© 2021. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Mazzaferri EL, Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447-63.
  • 2 Bryan RH, Eric KA, Keith CB, Gerard MD, Susan JM, Yuri E, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2015;26:76-80.
  • 3 Brilli L, Pacini F. Targeted therapy in refractory thyroid cancer: Current achievements and limitations. Future Oncol 2011;7:657-68.
  • 4 Thomas L, Lai SY, Dong W, Feng L, Dadu R, Regone RM, et al. Sorafenib in metastatic thyroid cancer: A systematic review. Oncologist 2014;19:251-8.
  • 5 Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892-9.
  • 6 Palme CE, Waseem Z, Raza SN, Eski S, Walfish P, Freeman JL. Management and outcome of recurrent well-differentiated thyroid carcinoma. Arch Otolaryngol Head Neck Surg 2004;130:819-24.
  • 7 Wassermann J, Bernier M, Spano J, Lepoutre-lussey C, Buffet C, Simon J, et al. Outcomes and prognostic factors in radioiodine refractory differentiated thyroid carcinomas. Oncologist 2016;21:50-8.
  • 8 Nasreen F, Nahar N, Sultana S, Alam F. Outcome of well-differentiated thyroid carcinoma patients receiving a cumulative doses of ≥600 mCi (22GBq) of I-131. Bangladesh J Nucl Med 2014;17:114-9.
  • 9 Martins-Filho R, Ward LS, Amorim BJ, Santos AO, Lima MCL, Ramos CD, et al. Cumulative doses of radioiodine in the treatment of differentiated thyroid carcinoma: Knowing when to stop. Arq Bras Endocrinol Metabol 2010;54:807-12.
  • 10 Liu N, Meng Z, Jia Q, Tan J, Zhang G, Zheng W, et al. Multiple-factor analysis of the first radioactive iodine therapy in post-operative patients with differentiated thyroid cancer for achieving a disease-free status. Sci Rep 2016;6:34915.
  • 11 Karam M, Gianoukakis A, Feustel PJ, Cheema A, Postal ES, Cooper JA. Influence of diagnostic and therapeutic doses on thyroid remnant ablation rates. Nucl Med Commun 2003;24:489-95.
  • 12 Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer 2003;89:1638-44.
  • 13 Lin JD, Kuo SF, Huang BY, Lin SF, Chen ST. The efficacy of radioactive iodine for the treatment of well-differentiated thyroid cancer with distant metastasis. Nucl Med Commun 2018;39:1091-6.
  • 14 Joseph KR, Edirimanne S, Eslick GD. The association between breast cancer and thyroid cancer: A meta-analysis. Breast Cancer Res Treat 2015;152:173-81.
  • 15 Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962;87:171-82.
  • 16 de Vathaire F, Schlumberger M, Delisle MJ, Francese C, Challeton C, de la Genardiére E, et al. Leukaemias and cancers following iodine-131 administration for thyroid cancer. Br J Cancer 1997;75:734-9.
  • 17 Chaparro CM, Suchdev PS. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci 2019;1450:15-31.
  • 18 Panich V, Pornpatkul M, Sriroongrueng W. The problem of thalassemia in Thailand. Southeast Asian J Trop Med Public Health 1992;23 Suppl 2:1-6.
  • 19 Molinaro E, Leboeuf R, Shue B, Martorella AJ, Fleisher M, Larson S, et al. Mild decreases in white blood cell and platelet counts are present one year after radioactive iodine remnant ablation. Thyroid 2009;19:1035-41.
  • 20 Prinsen HT, Helselink EN, Brouwers AH, Plukker JT, Sluiter WJ, Links TP, et al. Bone marrow function after I-131 therapy in patients with differentiated thyroid carcinom. J Clin Endocrinol Metabol 2015;100;3911-7.
  • 21 Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med 1998;39:1551-4.
  • 22 Myant NB. Iodine metabolism of salivary glands. Ann N Y Acad Sci 1960;85:208-14.
  • 23 Ko KY, Kao CH, Lin CL, Huang WS, Yen RF. I-131 treatment for thyroid cancer and the risk of developing salivary and lacrimal gland dysfunction and a secondary primary malignancy: A nationwide population-based cohort study. Eur J Nucl Mol Imaging 2015;42:1172-8.
  • 24 Solans R, Bosch JA, Galofré P, Porta F, Roselló J, Selva-O'Callagan A, et al. Salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J Nucl Med 2001;42:738-43.