RSS-Feed abonnieren
DOI: 10.4103/wjnm.WJNM_52_18
Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging in prediction of response to neoadjuvant chemotherapy in pediatric osteosarcoma
Abstract
The aim of our study was to evaluate the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) in prediction of response to neoadjuvant chemotherapy (NAC) in pediatric osteosarcoma (OS) patients compared to percentage of tumor necrosis after surgical excision of the tumor. Forty-six pediatric OS patients treated with neoadjuvant chemotherapy and surgery were underwent PET/CT and MRI before, after 3 cycles, and after the completion of neoadjuvant chemotherapy. Imaging parameters include maximum standardized uptake value (SUVmax1, 2, and 3), tumor liver ratio (TLR 1, 2, and 3), and MRI tumor volume (MRTV 1, 2, and 3) at initial assessment before starting NAC, after finishing three cycles and after finishing 6 cycles before tumor excision, respectively. Cutoff values of the PET/CT and MRI parameters were determined using receiver operating characteristic (ROC) curve analysis and percentage of tumor necrosis of postsurgical specimen. Fourteen patients were good responders (30.4%), with more than 90% tumor necrosis, while 31 patients were poor responders (67.4%). The results of one patient were missed. We noticed that higher sensitivity for detecting poor responders was detected by SUVmax3/1, TLR3/1, and MRTV2/1 ratio cutoff values, while higher specificity was detected by TRL2 and SUVmax3 cutoff values. ROC curve analysis of MRTV2/1 and MRTV3/1 ratio was fair in predicting poor responders. PET/CT parameters are capable of predicting histological response to NAC in OS patients with overall sensitivity and specificity higher than MRI parameters.
Keywords
18F-fluorodeoxyglucose positron emission tomography/computed tomography - magnetic resonance imaging - neoadjuvant chemotherapy - osteosarcomaFinancial support and sponsorship
Nil.
Publikationsverlauf
Eingereicht: 15. Mai 2018
Angenommen: 12. Juni 2018
Artikel online veröffentlicht:
22. April 2022
© 2019. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Marulanda GA, Henderson ER, Johnson DA, Letson GD, Cheong D. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control 2008;15:13-20.
- 2 Rosen G, Forscher CA, Mankin HJ, Selch MT; Bone Tumors. In Holland-Frei Cancer Medicine. Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Gansler TS, Holland JF et al., editors; 5th edition, Hamilton (ON): BC Decker; 2000. p. 8.
- 3 Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986;314:1600-6.
- 4 Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis 2007;2:6.
- 5 Miwa S, Shirai T, Taki J, Sumiya H, Nishida H, Hayashi K, et al. Use of 99mTc-MIBI scintigraphy in the evaluation of the response to chemotherapy for osteosarcoma: Comparison with 201Tl scintigraphy and angiography. Int J Clin Oncol 2011;16:373-8.
- 6 Im HJ, Kim TS, Park SY, Min HS, Kim JH, Kang HG, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging 2012;39:39-49.
- 7 Benjamin RS, Choi H, Macapinlac HA, Burgess MA, Patel SR, Chen LL, et al. We should desist using RECIST, at least in GIST. J Clin Oncol 2007;25:1760-4.
- 8 Schuetze SM, Baker LH, Benjamin RS, Canetta R. Selection of response criteria for clinical trials of sarcoma treatment. Oncologist 2008;13 Suppl 2:32-40.
- 9 Kim SY, Helman LJ. Strategies to explore new approaches in the investigation and treatment of osteosarcoma. Cancer Treat Res 2009;152:517-28.
- 10 Bacci G, Longhi A, Fagioli F, Briccoli A, Versari M, Picci P, et al. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli institute, Italy. Eur J Cancer 2005;41:2836-45.
- 11 Uhl M, Saueressig U, Koehler G, Kontny U, Niemeyer C, Reichardt W, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: Preliminary results in osteosarcomas. Pediatr Radiol 2006;36:1306-11.
- 12 Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: A critical review. J Clin Oncol 1994;12:423-31.
- 13 Bajpai J, Gamnagatti S, Kumar R, Sreenivas V, Sharma MC, Khan SA, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: Correlation with histological necrosis. Pediatr Radiol 2011;41:441-50.
- 14 Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar MR, Keppler P, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637-43.
- 15 Byun BH, Kong CB, Lim I, Choi CW, Song WS, Cho WH, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: Preliminary results in osteosarcoma. J Nucl Med 2013;54:1053-9.
- 16 van der Woude HJ, Bloem JL, Hogendoorn PC. Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing's sarcoma: Review of current imaging modalities. Skeletal Radiol 1998;27:57-71.
- 17 Byun BH, Kong CB, Lim I, Kim BI, Choi CW, Song WS, et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential18 F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging 2014;41:1553-62.
- 18 Ye Z, Zhu J, Tian M, Zhang H, Zhan H, Zhao C, et al. Response of osteogenic sarcoma to neoadjuvant therapy: Evaluated by 18F-FDG-PET. Ann Nucl Med 2008;22:475-80.
- 19 Hawkins DS, Conrad EU 3rd, Butrynski JE, Schuetze SM, Eary JF. [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 2009;115:3519-25.
- 20 Cheon GJ, Kim MS, Lee JA, Lee SY, Cho WH, Song WS, et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med 2009;50:1435-40.
- 21 Kong CB, Byun BH, Lim I, Choi CW, Lim SM, Song WS, et al.167 F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 2013;40:728-36.