CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(03): 246-254
DOI: 10.4103/wjnm.WJNM_76_19
Original Article

Clinical value of perilesional perfusion deficit measured by Technetium-99m-ECD single-photon emission computed tomography in hypertensive intracerebral hemorrhage

Mayur Thakkar
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Abdul Qavi
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Ajai Singh
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Pradeep Maurya
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Dinkar Kulshreshtha
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Anup Thacker
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Satyawati Deswal
Department of Neurology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
› Author Affiliations

Abstract

Pathological and experimental studies indicate the existence of a “penumbra” of progressive tissue damage and edema in regions immediately surrounding a hematoma in patients of intracerebral hemorrhage (ICH). This zone of oligemia surrounding ICH has a potential for perfusion recovery. Improved understanding of the pathophysiology of perilesional blood flow changes and brain injury after ICH may result in improved treatment strategies. The aim was to study perilesional blood flow changes in ICH by perfusion deficit (PD) measured by single-photon emission computed tomography (SPECT) and to correlate it with the severity of ICH and outcome. Forty-four patients of computed tomography (CT) documented nonlobar deep ICH suggestive of hypertensive hematoma of <7 days duration were subjected to 99mTc-ethylene diacetate SPECT scans of the brain. Patients with significant midline shift (0.5 cm) or global blood flow reduction were excluded from the analysis. SPECT scan of the brain was analyzed by segmental analysis, a semi-quantitative method of cerebral blood flow. A difference of radiotracer uptake of >10% between the region of interest of ICH cases and the ratio between the two ROI below 0.9 was taken as a significant PD. A correlation of PD was analyzed with that of various parameters such as the severity of stroke, duration from onset of ictus, and imaging including CT scan of the brain and SPECT scan. A statistically significant difference in the percentage of radiotracer uptake on comparison of ipsilateral and contralateral to ICH (P < 0.001) was observed, suggesting a significant hypoperfusion in the perilesional area in patients with ICH. A statistically significant correlation was noted between the severity of stroke and PD indicated by various parameters such as the National Institutes of Health Stroke Scale (NIHSS) score at admission (r = 0.328, P = 0.016), Glasgow Coma Scale (GCS) score at admission (r = −0.388, P = 0.005), and ICH score at admission (r = 0.314, P = 0.020). This study demonstrated more severe hypoperfusion in clinically severe ICH which is a possible explanation of poor outcomes in severe ICH cases. We observed hypoperfusion on SPECT study in 25 of 34 (73.5%) patients with subacute ICH and 5 of 10 patients (50%) with acute ICH. The mean time from the onset of ictus to SPECT scan done was 5.04 ± 1.75 days with a range of 1—7 days, suggesting the persistence of hypoperfusion in subacute stages too. This finding may be of clinical importance for identifying the salvageable area surrounding ICH for any possible intervention in future to improve the outcome. This study demonstrates that perilesional PD occurs in acute and subacute cases of ICH. This hypoperfusion is possibly time related and appears to be more severe in patients having major ICH with poor clinical and imaging parameters. This area of hypoperfusion or ischemic penumbra is a potential site for perfusion recovery to improve clinical outcomes and to reduce long-term neurological deficits.

Financial support and sponsorship

Nil.




Publication History

Received: 18 October 2019

Accepted: 29 January 2020

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Sacco RL, Mayer SA. Epidemiology of intracerebral hemorrhage. In: Feldmann E, editor. Intracerebral Hemorrhage. Mount Kisco, NY: Futura; 1994. p. 3-23.
  • 2 Feigin VL. Stroke in developing countries: Can the epidemic be stopped and outcomes improved? Lancet Neurol 2007;6:94-7.
  • 3 An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J Stroke 2017;19:3-10.
  • 4 Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology 1994;44:1379-84.
  • 5 Juvela S, Heiskanen O, Poranen A, Valtonen S, Kuurne T, Kaste M, et al. The treatment of spontaneous intracerebral hemorrhage. A prospective randomized trial of surgical and conservative treatment. J Neurosurg 1989;70:755-8.
  • 6 Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: Relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 1994;81:93-102.
  • 7 Suzuki J, Ebina T. Sequential changes in tissue surrounding ICH. In: Pia HW, Longmaid C, Zierski J, editors. Spontaneous Intracerebral Hematomas. Berlin, Germany: Springer-Verlag; 1980. p. 121-8.
  • 8 Jenkins A, Mendelow AD, Graham DI, Nath FP, Teasdale GM. Experimental intracerebral haematoma: The role of blood constituents in early ischaemia. Br J Neurosurg 1990;4:45-51.
  • 9 Askenase MH, Sansing LH. Stages of the inflammatory response in pathology and tissue repair after intracerebral hemorrhage. Semin Neurol 2016;36:288-97.
  • 10 Bullock R, Brock-Utne J, van Dellen J, Blake G. Intracerebral hemorrhage in a primate model: Effect on regional cerebral blood flow. Surg Neurol 1988;29:101-7.
  • 11 Sills C, Villar-Cordova C, Pasteur W, Ramirez A, Lamki L, Barron B, et al. Demonstration of hypoperfusion surrounding intracerebral hematoma in humans. J Stroke Cerebrovasc Dis 1996;6:17-24.
  • 12 Rousseaux M, Steinling M, Huglo D, Mazingue A, Barbaste P. Perfusion mapping with Tc-HMPAO in cerebral haematomas. J Neurol Neurosurg Psychiatry 1991;54:1040-3.
  • 13 Villar-Cordova C, Krieger D, Mullani N, Grotta JC. Hypometabolism and ischemic penumbra surrounding intracerebral hemorrhage in humans demonstrated by positron emission tomography. Stroke 1997;28:254.
  • 14 Garrett K, Villanueva J, Kuperus J, Giombetti R, Mena I. A comparison of regional cerebral blood flow with Xe-l33 to SPECT Tc-99m-ECD. J NuclMed 1988;29:913.
  • 15 Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996;27:1304-5.
  • 16 Mayer SA, Lignelli A, Fink ME, Kessler DB, Thomas CE, Swarup R, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: A SPECT study. Stroke 1998;29:1791-8.
  • 17 Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001;32:891-7.
  • 18 Ogasawara K, Numagami Y, Kitahara M. Diaschisis in right putaminal hemorrhage: Correlation with motor function. No Shinkei Geka 1994;22:1123-9.
  • 19 Marietta M, Pedrazzi P, Girardis M, Torelli G. Intracerebral haemorrhage: An often neglected medical emergency. Intern Emerg Med 2007;2:38-45.
  • 20 Kingman TA, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral mass: Time-related effects on local cerebral blood flow. J Neurosurg 1987;67:732-8.
  • 21 Agnoli A, Fieschi C, Prencipe M, Bozzao L. Relationship between regional hemodynamics in acute cerebrovascular lesions and clinicopathologic aspects. In: Meyer JS, Reivich M, Lechner H, Eichhorn O, editors. Research on the Cerebral Circulation. Fourth International Salzberg Conference. Springfield, IL: Charles C. Thomas Co; 1970. P. 148-54.
  • 22 Siddique MS, Fernandes HM, Wooldridge TD, Fenwick JD, Slomka P, Mendelow AD. Reversible ischemia around intracerebral hemorrhage: A single-photon emission computerized tomography study. J Neurosurg 2002;96:736-41.
  • 23 Hallenbeck JM, Dutka AJ. Background review and current concepts of reperfusion injury. Arch Neurol 1990;47:1245-54.
  • 24 Herweh C, Jüttler E, Schellinger PD, Klotz E, Jenetzky E, Orakcioglu B, et al. Evidence against a perihemorrhagic penumbra provided by perfusion computed tomography. Stroke 2007;38:2941-7.
  • 25 Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab 2001;21:804-10.