A case report of refining user requirements for a health information exchange dashboard
Scott D. Nelson
1
Vanderbilt University Medical Center, Nashville, TN, USA
,
Guilherme Del Fiol
2
University of Utah, Salt Lake City, UT, USA
,
Haley Hanseler
2
University of Utah, Salt Lake City, UT, USA
,
Barbara Insley Crouch
2
University of Utah, Salt Lake City, UT, USA
,
Mollie R. Cummins
2
University of Utah, Salt Lake City, UT, USA
› InstitutsangabenWe would like to thank Frank Drews, PhD for his help and review. This study was funded by the US Agency for Healthcare Research & Quality (1 R01 HS021472–01A1). At the time of this study, Dr. Nelson was supported by the VA Advanced Fellowship Program in Medical Informatics of the Office of Academic Affiliations, Department of Veterans Affairs. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs.
Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping.
Objective
To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping.
Methods
Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS).
Results
Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system.
Keywords
Software design -
user-computer interface -
human engineering/methods -
medical informatics/methods
2
Friedman LS,
Krajewski A,
Vannoy E,
Allegretti A,
Wahl M.
The association between U.S. Poison Center assistance and length of stay and hospital charges. Clin Toxicol (Phila) 2014; 52 (03) 198-206 doi: 10.3109/15563650.2014.892125. PubMed PMID: 24580060.
4
Cummins MR,
Crouch B,
Gesteland P,
Wyckoff A,
Allen T,
Muthukutty A,
Palmer R,
Peelay J,
Repko K.
Inefficiencies and vulnerabilities of telephone-based communication between U. S. poison control centers and emergency departments. Clin Toxicol (Phila) 2013; 51 (05) 435-443 Epub 2013/05/24. doi: 10.3109/15563650.2013.801981. PubMed PMID: 23697459.
5
Vassilev ZP,
Kashani J,
Ruck B,
Hoffman RS,
Marcus SM.
Poison control center surge capacity during an unusual increase in call volume – results from a natural experiment. Prehosp Disaster Med 2007; 22 (01) 55-58 PubMed PMID: 17484364.
7
Del Fiol G,
Crouch BI,
Cummins MR.
Data standards to support health information exchange between poison control centers and emergency departments. J Am Med Inform Assoc. 2014 doi: 10.1136/amiajnl-2014–003127. PubMed PMID: 25342180.
8
Cummins MR,
Crouch BI,
Gesteland P,
Staggers N,
Wyckoff A,
Wong BG.
Electronic information exchange between emergency departments and poison control centers: a Delphi study. Clin Toxicol (Phila) 2012; 50 (06) 503-513 Epub 2012/05/23. doi: 10.3109/15563650.2012.693183. PubMed PMID: 22612793.
10
Johnson KB.
Barriers that impede the adoption of pediatric information technology. Arch Pediatr Adolesc Med 2001; 155 (12) 1374-1379 PubMed PMID: 11732959.
11
Verhoeven F,
Steehouder MF,
Hendrix RM,
van Gemert-Pijnen JE.
Factors affecting health care workers’ adoption of a website with infection control guidelines. Int J Med Inform 2009; 78 (10) 663-678 doi: 10.1016/j.ijmedinf.2009.06.001. PubMed PMID: 19577956.
12
Weir CR,
Crockett R,
Gohlinghorst S,
McCarthy C.
Does user satisfaction relate to adoption behavior?: an exploratory analysis using CPRS implementation. Proc AMIA Symp 2000; 913-917 PubMed PMID: 11080017; PubMed Central PMCID: PMCPMC2243831.
13
Fairbanks RJ,
Caplan S.
Poor interface design and lack of usability testing facilitate medical error. Jt Comm J Qual Saf 2004; 30 (10) 579-584 PubMed PMID: 15518362.
15
Horsky J,
Kuperman GJ,
Patel VL.
Comprehensive analysis of a medication dosing error related to CPOE. J Am Med Inform Assoc 2005; 12 (04) 377-382 doi: 10.1197/jamia.M1740. PubMed PMID: 15802485; PubMed Central PMCID: PMC1174881.
17
Brown S,
Holzinger A.
editors Low cost prototyping: Part 1, or how to produce better ideas faster by getting user reactions early and often. Proceedings of the 22nd British HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction-Volume 2. 2008. British Computer Society.;
18
Heaton N.
editor What’s wrong with the user interface: How rapid prototyping can help. Software Prototyping and Evolutionary Development, IEE Colloquium on. 1992. IET.;
21
Nelson S,
Del Fiol G,
Hanseler H,
Crouch B,
Cummins M.
A dashboard for health information exchange between poison control centers and emergency departments: the poison control center view. 2014 Annual Meeting of the North American Congress of Clinical Toxicology (NACCT). Oct 2014. New Orleans, LA: Clin Toxicol 2014; 682-818.
22
Jaspers MW.
A comparison of usability methods for testing interactive health technologies: methodological aspects and empirical evidence. Int J Med Inform 2009; 78 (05) 340-353 doi: 10.1016/j.ijme-inf.2008.10.002. PubMed PMID: 19046928.
25
Nielsen J.
Estimating the number of subjects needed for a thinking aloud test. International journal of human-computer studies 1994; 41 (03) 385-397.
26
Nelson SD,
Del Fiol G,
Hanseler H,
Crouch B,
Cummins M.
A dashboard for health information exchange between poison control centers and emergency departments: the poison control center view. Clin Toxicol 2014; 52: 682-818.
27
Del Fiol G,
Crouch BI,
Cummins MR.
Data standards to support health information exchange between poison control centers and emergency departments. J Am Med Inform Assoc 2015; 22 (03) 519-528 doi: 10.1136/amiajnl-2014–003127. PubMed PMID: 25342180.
28
Nielsen J.
Paper versus computer implementations as mockup scenarios for heuristic evaluation. Proceedings of the IFIP TC13 Third Interational Conference on Human-Computer Interaction. 725312. North-Holland Publishing Co; 1990: 315-320.
29
Tetzlaff L,
Schwartz DR.
The use of guidelines in interface design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New Orleans, Louisiana, USA. 108936: ACM; 1991: 329-33.
31
Humayoun SR,
Hess S,
Kiefer F,
Ebert A.
editors i2ME: a framework for building interactive mockups. Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services. 2013. ACM.;
33
Saitwal H,
Feng X,
Walji M,
Patel V,
Zhang J.
Assessing performance of an Electronic Health Record (EHR) using Cognitive Task Analysis. Int J Med Inform 2010; 79 (07) 501-506 doi: 10.1016/j.ijmedinf.2010.04.001. PubMed PMID: 20452274.
37
Virzi RA,
Sokolov JL,
Karis D.
editors Usability problem identification using both low-and high-fidelity prototypes. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1996. ACM.;
38
Cummins M,
Crouch B,
Del Fiol G,
Mateos B,
Muthukutty A,
Wyckoff A.
Information Requirements for Health Information Exchange Supported Communication between Emergency Departments and Poison Control Centers. AMIA Annu Symp Proc 2014; 449-456.
39
Kahneman D.
Thinking Fast and Slow. New York: Ferrar, Straus and Giroux; 2011
40
Smith ER,
DeCoster J.
Dual-Process Models in Social and Cognitive Psychology: Conceptual Integration and Links to Underlying Memory Systems. Personality and Social Psychology Review 2000; 04 (02) 108-131.
41
Croskerry P.
Clinical cognition and diagnostic error: applications of a dual process model of reasoning. Advances in health sciences education 2009; 14 (01) 27-35.
42
Cooke L,
Cuddihy E.
editors Using eye tracking to address limitations in think-aloud protocol. Professional Communication Conference, 2005 IPCC 2005 Proceedings International. 2005. IEEE.;
44
Cummins M,
Crouch B,
Del Fiol G,
Greene T,
Allen T,
Naurs S.
Electronic Exchange of poisoning Information AHRQ 1R01HS021472-01A1. Salt Lake City; UT: 2013