Subscribe to RSS
DOI: 10.4338/ACI-2017-06-R-0101
Clinical Informatics Researcher's Desiderata for the Data Content of the Next Generation Electronic Health Record
Publication History
21 June 2017
14 October 2017
Publication Date:
21 December 2017 (online)
Abstract
Objective Clinical informatics researchers depend on the availability of high-quality data from the electronic health record (EHR) to design and implement new methods and systems for clinical practice and research. However, these data are frequently unavailable or present in a format that requires substantial revision. This article reports the results of a review of informatics literature published from 2010 to 2016 that addresses these issues by identifying categories of data content that might be included or revised in the EHR.
Materials and Methods We used an iterative review process on 1,215 biomedical informatics research articles. We placed them into generic categories, reviewed and refined the categories, and then assigned additional articles, for a total of three iterations.
Results Our process identified eight categories of data content issues: Adverse Events, Clinician Cognitive Processes, Data Standards Creation and Data Communication, Genomics, Medication List Data Capture, Patient Preferences, Patient-reported Data, and Phenotyping.
Discussion These categories summarize discussions in biomedical informatics literature that concern data content issues restricting clinical informatics research. These barriers to research result from data that are either absent from the EHR or are inadequate (e.g., in narrative text form) for the downstream applications of the data. In light of these categories, we discuss changes to EHR data storage that should be considered in the redesign of EHRs, to promote continued innovation in clinical informatics.
Conclusion Based on published literature of clinical informaticians' reuse of EHR data, we characterize eight types of data content that, if included in the next generation of EHRs, would find immediate application in advanced informatics tools and techniques.
Keywords
electronic health records - information storage and retrieval - health system - clinical informatics research - data qualityFunding
This study was funded in part by the Center for Clinical and Translational Sciences (CCTS) at the University of Alabama at Birmingham (UAB) under grant 1TL1TR001418–01, partly by the NIH Medical Student Training Program grant to the University of Alabama at Birmingham under grant 5T32GM008361–23, and partly by the CCTS NCATS grant and by research funds from the UASOM Informatics Institute.
-
References
- 1 Murphy S, Wilcox A. Mission and sustainability of informatics for integrating biology and the bedside (i2b2). EGEMS (Wash DC) 2014; 2 (02) 1074
- 2 Sitapati A, Kim H, Berkovich B. , et al. Integrated precision medicine: the role of electronic health records in delivering personalized treatment. Wiley Interdiscip Rev Syst Biol Med 2017; 9 (03)
- 3 Hersh WR, Weiner MG, Embi PJ. , et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care 2013; 51 (08) (Suppl. 03) S30-S37
- 4 Hersh WR, Cimino J, Payne PR. , et al. Recommendations for the use of operational electronic health record data in comparative effectiveness research. EGEMS (Wash DC) 2013; 1 (01) 1018
- 5 Zulman DM, Shah NH, Verghese A. Evolutionary pressures on the electronic health record: Caring for complexity. JAMA 2016; 316 (09) 923-924
- 6 Ajami S, Arab-Chadegani R. Barriers to implement electronic health records (EHRs). Mater Sociomed 2013; 25 (03) 213-215
- 7 Meigs SL, Solomon M. Electronic health record use a bitter pill for many physicians. Perspect Health Inf Manag 2016; 13 (Winter): 1d
- 8 Madden JM, Lakoma MD, Rusinak D, Lu CY, Soumerai SB. Missing clinical and behavioral health data in a large electronic health record (EHR) system. J Am Med Inform Assoc 2016; 23 (06) 1143-1149
- 9 Smith M, Saunders R, Stuckhardt L, McGinnis JM. , eds. Best Care at Lower Cost: The Path to Continuously Learning Health Care in America. Washington, DC: The National Academies Press; 2013
- 10 Moher D, Liberati A, Tetzlaff J, Altman DG. ; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6 (07) e1000097
- 11 Kraemer HC. Extension of the kappa coefficient. Biometrics 1980; 36 (02) 207-216
- 12 Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull 1971; 76: 378-382
- 13 Epstein RH, St Jacques P, Stockin M, Rothman B, Ehrenfeld JM, Denny JC. Automated identification of drug and food allergies entered using non-standard terminology. J Am Med Inform Assoc 2013; 20 (05) 962-968
- 14 Sohn S, Kocher J-PA, Chute CG, Savova GK. Drug side effect extraction from clinical narratives of psychiatry and psychology patients. J Am Med Inform Assoc 2011; 18 (Suppl. 01) i144-i149
- 15 Plasek JM, Goss FR, Lai KH. , et al. Food entries in a large allergy data repository. J Am Med Inform Assoc 2016; 23 (no. e1): e79-e87
- 16 Wang G, Jung K, Winnenburg R, Shah NH. A method for systematic discovery of adverse drug events from clinical notes. J Am Med Inform Assoc 2015; 22 (06) 1196-1204
- 17 Li Y, Salmasian H, Vilar S, Chase H, Friedman C, Wei Y. A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records. J Am Med Inform Assoc 2014; 21 (02) 308-314
- 18 Rochefort CM, Verma AD, Eguale T, Lee TC, Buckeridge DL. A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data. J Am Med Inform Assoc 2015; 22 (01) 155-165
- 19 Dekarske BM, Zimmerman CR, Chang R, Grant PJ, Chaffee BW. Increased appropriateness of customized alert acknowledgement reasons for overridden medication alerts in a computerized provider order entry system. Int J Med Inform 2015; 84 (12) 1085-1093
- 20 Flink M, Bergenbrant Glas S, Airosa F. , et al. Patient-centered handovers between hospital and primary health care: an assessment of medical records. Int J Med Inform 2015; 84 (05) 355-362
- 21 Ancker JS, Kern LM, Edwards A. , et al; HITEC Investigators. How is the electronic health record being used? Use of EHR data to assess physician-level variability in technology use. J Am Med Inform Assoc 2014; 21 (06) 1001-1008
- 22 Flemming D, Przysucha M, Hübner U. Cognitive maps to visualise clinical cases in handovers. Design, implementation, usability, and attractiveness testing. Methods Inf Med 2015; 54 (05) 412-423
- 23 Schuster KM, Jenq GY, Thung SF. , et al. Electronic handoff instruments: a truly multidisciplinary tool?. J Am Med Inform Assoc 2014; 21 (e2, no. e2): e352-e357
- 24 Rinner C, Janzek-Hawlat S, Sibinovic S, Duftschmid G. Semantic validation of standard-based electronic health record documents with W3C XML schema. Methods Inf Med 2010; 49 (03) 271-280
- 25 Choquet R, Maaroufi M, de Carrara A, Messiaen C, Luigi E, Landais P. A methodology for a minimum data set for rare diseases to support national centers of excellence for healthcare and research. J Am Med Inform Assoc 2015; 22 (01) 76-85
- 26 Späth MB, Grimson J. Applying the archetype approach to the database of a biobank information management system. Int J Med Inform 2011; 80 (03) 205-226
- 27 Duftschmid G, Wrba T, Rinner C. Extraction of standardized archetyped data from electronic health record systems based on the Entity-Attribute-Value Model. Int J Med Inform 2010; 79 (08) 585-597
- 28 Sánchez-de-Madariaga R, Muñoz A, Cáceres J. , et al. ccML, a new mark-up language to improve ISO/EN 13606-based electronic health record extracts practical edition. J Am Med Inform Assoc 2013; 20 (02) 298-304
- 29 D'Amore JD, Mandel JC, Kreda DA. , et al. Are meaningful use Stage 2 certified EHRs ready for interoperability? Findings from the SMART C-CDA Collaborative. J Am Med Inform Assoc 2014; 21 (06) 1060-1068
- 30 Bache R, Taweel A, Miles S, Delaney BC. An eligibility criteria query language for heterogeneous data warehouses. Methods Inf Med 2015; 54 (01) 41-44
- 31 Warner JL, Maddux SE, Hughes KS. , et al. Development, implementation, and initial evaluation of a foundational open interoperability standard for oncology treatment planning and summarization. J Am Med Inform Assoc 2015; 22 (03) 577-586
- 32 Chen ES, Carter EW, Winden TJ, Sarkar IN, Wang Y, Melton GB. Multi-source development of an integrated model for family health history. J Am Med Inform Assoc 2015; 22 (no. e1): e67-e80
- 33 Blobel B, Goossen W, Brochhausen M. Clinical modeling--a critical analysis. Int J Med Inform 2014; 83 (01) 57-69
- 34 van der Bij S, Khan N, Ten Veen P, de Bakker DH, Verheij RA. Improving the quality of EHR recording in primary care: a data quality feedback tool. J Am Med Inform Assoc 2016; 24 (01) 81-87
- 35 Ronquillo JG, Li C, Lester WT. Genetic testing behavior and reporting patterns in electronic medical records for physicians trained in a primary care specialty or subspecialty. J Am Med Inform Assoc 2012; 19 (04) 570-574
- 36 Shoenbill K, Fost N, Tachinardi U, Mendonca EA. Genetic data and electronic health records: a discussion of ethical, logistical and technological considerations. J Am Med Inform Assoc 2014; 21 (01) 171-180
- 37 Alterovitz G, Warner J, Zhang P. , et al. SMART on FHIR Genomics: facilitating standardized clinico-genomic apps. J Am Med Inform Assoc 2015; 22 (06) 1173-1178
- 38 Shirts BH, Salama JS, Aronson SJ. , et al. CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record. J Am Med Inform Assoc 2015; 22 (06) 1231-1242
- 39 Manzi SF, Fusaro VA, Chadwick L. , et al. Creating a scalable clinical pharmacogenomics service with automated interpretation and medical record result integration - experience from a pediatric tertiary care facility. J Am Med Inform Assoc 2016; 24 (01) 74-80
- 40 Hoffman JM, Dunnenberger HM, Kevin Hicks J. , et al. Developing knowledge resources to support precision medicine: principles from the Clinical Pharmacogenetics Implementation Consortium (CPIC). J Am Med Inform Assoc 2016; 23 (04) 796-801
- 41 Xu H, Jiang M, Oetjens M. , et al. Facilitating pharmacogenetic studies using electronic health records and natural-language processing: a case study of warfarin. J Am Med Inform Assoc 2011; 18 (04) 387-391
- 42 Carrell DS, Cronkite D, Palmer RE. , et al. Using natural language processing to identify problem usage of prescription opioids. Int J Med Inform 2015; 84 (12) 1057-1064
- 43 Bobo WV, Pathak J, Kremers HM. , et al. An electronic health record driven algorithm to identify incident antidepressant medication users. J Am Med Inform Assoc 2014; 21 (05) 785-791
- 44 Hasan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. J Am Med Inform Assoc 2011; 18 (04) 449-458
- 45 Schnipper JL, Liang CL, Hamann C. , et al. Development of a tool within the electronic medical record to facilitate medication reconciliation after hospital discharge. J Am Med Inform Assoc 2011; 18 (03) 309-313
- 46 Heyworth L, Paquin AM, Clark J. , et al. Engaging patients in medication reconciliation via a patient portal following hospital discharge. J Am Med Inform Assoc 2014; 21 (e1, no. e1): e157-e162
- 47 Spasic I, Sarafraz F, Keane JA, Nenadic G. Medication information extraction with linguistic pattern matching and semantic rules. J Am Med Inform Assoc 2010; 17 (05) 532-535
- 48 Mork JG, Bodenreider O, Demner-Fushman D. , et al. Extracting Rx information from clinical narrative. J Am Med Inform Assoc 2010; 17 (05) 536-539
- 49 Meystre SM, Thibault J, Shen S, Hurdle JF, South BR. Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents. J Am Med Inform Assoc 2010; 17 (05) 559-562
- 50 Uzuner O, Solti I, Xia F, Cadag E. Community annotation experiment for ground truth generation for the i2b2 medication challenge. J Am Med Inform Assoc 2010; 17 (05) 519-523
- 51 Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med Inform Assoc 2010; 17 (05) 514-518
- 52 Patrick J, Li M. High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge. J Am Med Inform Assoc 2010; 17 (05) 524-527
- 53 Hamon T, Grabar N. Linguistic approach for identification of medication names and related information in clinical narratives. J Am Med Inform Assoc 2010; 17 (05) 549-554
- 54 Doan S, Bastarache L, Klimkowski S, Denny JC, Xu H. Integrating existing natural language processing tools for medication extraction from discharge summaries. J Am Med Inform Assoc 2010; 17 (05) 528-531
- 55 Wilson CJ, Newman J, Tapper S. , et al. Multiple locations of advance care planning documentation in an electronic health record: are they easy to find?. J Palliat Med 2013; 16 (09) 1089-1094
- 56 Turley M, Wang S, Meng D, Kanter MH, Garrido T. An information model for automated assessment of concordance between advance care preferences and care delivered near the end of life. J Am Med Inform Assoc 2016; 23 (e1): e118-e124
- 57 Klemets J, Toussaint P. Does revealing contextual knowledge of the patient's intention help nurses' handling of nurse calls?. Int J Med Inform 2016; 86: 1-9
- 58 Woods SS, Evans NC, Frisbee KL. Integrating patient voices into health information for self-care and patient-clinician partnerships: Veterans Affairs design recommendations for patient-generated data applications. J Am Med Inform Assoc 2016; 23 (03) 491-495
- 59 Adler NE, Stead WW. Patients in context--EHR capture of social and behavioral determinants of health. N Engl J Med 2015; 372 (08) 698-701
- 60 Hripcsak G, Forrest CB, Brennan PF, Stead WW. Informatics to support the IOM social and behavioral domains and measures. J Am Med Inform Assoc 2015; 22 (04) 921-924
- 61 Kumar RB, Goren ND, Stark DE, Wall DP, Longhurst CA. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology. J Am Med Inform Assoc 2016; 23 (03) 532-537
- 62 Reeder B, Meyer E, Lazar A, Chaudhuri S, Thompson HJ, Demiris G. Framing the evidence for health smart homes and home-based consumer health technologies as a public health intervention for independent aging: a systematic review. Int J Med Inform 2013; 82 (07) 565-579
- 63 Reeder B, Chung J, Le T, Thompson H, Demiris G. Assessing older adults' perceptions of sensor data and designing visual displays for ambient environments. An exploratory study. Methods Inf Med 2014; 53 (03) 152-159
- 64 Knaup P, Schöpe L. Using data from ambient assisted living and smart homes in electronic health records. Methods Inf Med 2014; 53 (03) 149-151
- 65 Wright A, Pang J, Feblowitz JC. , et al. A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record. J Am Med Inform Assoc 2011; 18 (06) 859-867
- 66 Tian TY, Zlateva I, Anderson DR. Using electronic health records data to identify patients with chronic pain in a primary care setting. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e275-e280
- 67 Wei W-Q, Teixeira PL, Mo H, Cronin RM, Warner JL, Denny JC. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. J Am Med Inform Assoc 2016; 23 (e1): e20-e27
- 68 Newton KM, Peissig PL, Kho AN. , et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc 2013; 20 (e1, no. e1): e147-e154
- 69 Overby CL, Pathak J, Gottesman O. , et al. A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e243-e252
- 70 Zhong VW, Obeid JS, Craiq JB. , et al. An efficient approach for surveillance of childhood diabetes by type derived from electronic health record data: the SEARCH for Diabetes in Youth Study. J Am Med Inform Assoc 2016; 23 (06) 1060-1067
- 71 Byrd RJ, Steinhubl SR, Sun J, Ebadollahi S, Stewart WF. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records. Int J Med Inform 2014; 83 (12) 983-992
- 72 Agarwal V, Podchiyska T, Banda JM. , et al. Learning statistical models of phenotypes using noisy labeled training data. J Am Med Inform Assoc 2016; 23 (06) 1166-1173
- 73 Osborne JD, Wyatt M, Westfall AO, Willig J, Bethard S, Gordon G. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning. J Am Med Inform Assoc 2016; 23 (06) 1077-1084
- 74 Halpern Y, Horng S, Choi Y, Sontag D. Electronic medical record phenotyping using the anchor and learn framework. J Am Med Inform Assoc 2016; 23 (04) 731-740
- 75 Friedman C, Elhadad N. Natural language processing in health care and biomedicine. In: Cimino JJ, Shortliffe EH. , eds. Biomedical Informatics: Computer Application in Health Care and Biomedicine, 4th ed., Vol. 1. London: Springer; 2014: 255-284
- 76 Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health system. Sci Transl Med 2010; 2 (57) 57cm29
- 77 Payne TH, Corley S, Cullen TA. , et al. Report of the AMIA EHR-2020 Task Force on the status and future direction of EHRs. J Am Med Inform Assoc 2015; 22 (05) 1102-1110
- 78 Shortliffe EH, Cimino JJ. (eds). Biomedical Informatics—Computer Applications in Health (4th ed.). Springer; 2014
- 79 Liaw S-T, Chen HY, Maneze D. , et al. Health reform: is routinely collected electronic information fit for purpose?. Emerg Med Australas 2012; 24 (01) 57-63
- 80 Dixon BE, Rosenman M, Xia Y, Grannis SJ. A vision for the systematic monitoring and improvement of the quality of electronic health data. Stud Health Technol Inform 2013; 192: 884-888
- 81 Cusack CM, Hripcsak G, Bloomrosen M. , et al. The future state of clinical data capture and documentation: a report from AMIA's 2011 Policy Meeting. J Am Med Inform Assoc 2013; 20 (01) 134-140
- 82 Abramson EL, Malhotra S, Osorio SN. , et al. A long-term follow-up evaluation of electronic health record prescribing safety. J Am Med Inform Assoc 2013; 20 (e1, no. e1): e52-e58
- 83 Ceusters W, Capolupo M, de Moor G, Devlies J, Smith B. An evolutionary approach to realism-based adverse event representations. Methods Inf Med 2011; 50 (01) 62-73
- 84 Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc 2012; 19 (01) 79-85
- 85 Declerck G, Hussain S, Daniel C. , et al. Bridging data models and terminologies to support adverse drug event reporting using EHR data. Methods Inf Med 2015; 54 (01) 24-31
- 86 Cheung K-C, van der Veen W, Bouvy ML, Wensing M, van den Bemt PM, de Smet PA. Classification of medication incidents associated with information technology. J Am Med Inform Assoc 2014; 21 (e1, no. e1): e63-e70
- 87 Bates J, Fodeh SJ, Brandt CA, Womack JA. Classification of radiology reports for falls in an HIV study cohort. J Am Med Inform Assoc 2016; 23 (e1, no. e1): e113-e117
- 88 Harpaz R, Vilar S, Dumouchel W. , et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc 2013; 20 (03) 413-419
- 89 Liu M, McPeek Hinz ER, Matheny ME. , et al. Comparative analysis of pharmacovigilance methods in the detection of adverse drug reactions using electronic medical records. J Am Med Inform Assoc 2013; 20 (03) 420-426
- 90 Mei YY, Marquard J, Jacelon C, DeFeo AL. Designing and evaluating an electronic patient falls reporting system: perspectives for the implementation of health information technology in long-term residential care facilities. Int J Med Inform 2013; 82 (11) e294-e306
- 91 Eriksson R, Jensen PB, Frankild S, Jensen LJ, Brunak S. Dictionary construction and identification of possible adverse drug events in Danish clinical narrative text. J Am Med Inform Assoc 2013; 20 (05) 947-953
- 92 McCart JA, Berndt DJ, Jarman J, Finch DK, Luther SL. Finding falls in ambulatory care clinical documents using statistical text mining. J Am Med Inform Assoc 2013; 20 (05) 906-914
- 93 Koutkias VG, McNair P, Kilintzis V. , et al. From adverse drug event detection to prevention. A novel clinical decision support framework for medication safety. Methods Inf Med 2014; 53 (06) 482-492
- 94 Missiakos O, Baysari MT, Day RO. Identifying effective computerized strategies to prevent drug-drug interactions in hospital: a user-centered approach. Int J Med Inform 2015; 84 (08) 595-600
- 95 Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH. Mining clinical text for signals of adverse drug-drug interactions. J Am Med Inform Assoc 2014; 21 (02) 353-362
- 96 Li Q, Melton K, Lingren T. , et al. Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care. J Am Med Inform Assoc 2014; 21 (05) 776-784
- 97 Topaz M, Seger DL, Goss F. , et al. Standard information models for representing adverse sensitivity information in clinical documents. Methods Inf Med 2016; 55 (02) 151-157
- 98 Ban VS, Madden CJ, Browning T, O'Connell E, Marple BF, Moran B. A novel use of the discrete teh record software to monitor resident supervimplated notes within an electronic healtsion. J Am Med Inform Assoc 2016; 24 (e1): e2-e8
- 99 Flemming D, Hübner U. How to improve change of shift handovers and collaborative grounding and what role does the electronic patient record system play? Results of a systematic literature review. Int J Med Inform 2013; 82 (07) 580-592
- 100 Krauss JC, Boonstra PS, Vantsevich AV, Friedman CP. Is the problem list in the eye of the beholder? An exploration of consistency across physicians. J Am Med Inform Assoc 2016; 23 (05) 859-865
- 101 Benham-Hutchins MM, Effken JA. Multi-professional patterns and methods of communication during patient handoffs. Int J Med Inform 2010; 79 (04) 252-267
- 102 Balka E, Tolar M, Coates S, Whitehouse S. Socio-technical issues and challenges in implementing safe patient handovers: insights from ethnographic case studies. Int J Med Inform 2013; 82 (12) e345-e357
- 103 Jang J, Yu SH, Kim C-B, Moon Y, Kim S. The effects of an electronic medical record on the completeness of documentation in the anesthesia record. Int J Med Inform 2013; 82 (08) 702-707
- 104 Saleem JJ, Flanagan ME, Wilck NR, Demetriades J, Doebbeling BN. The next-generation electronic health record: perspectives of key leaders from the US Department of Veterans Affairs. J Am Med Inform Assoc 2013; 20 (e1, no. e1): e175-e177
- 105 Braga RD. ; Panel of Specialists in Health. A multiprofessional information model for Brazilian primary care: Defining a consensus model towards an interoperable electronic health record. Int J Med Inform 2016; 90: 48-57
- 106 Berges I, Bermudez J, Illarramendi A. Binding SNOMED CT terms to archetype elements. Establishing a baseline of results. Methods Inf Med 2015; 54 (01) 45-49
- 107 Mo H, Thompson WK, Rasmussen LV. , et al. Desiderata for computable representations of electronic health records-driven phenotype algorithms. J Am Med Inform Assoc 2015; 22 (06) 1220-1230
- 108 Milberg JA. Development, use, and integration of a nationally-distributed HIV/AIDS electronic health information system. J Am Med Inform Assoc 2016; 23 (06) 1190-1194
- 109 Kush R, Goldman M. Fostering responsible data sharing through standards. N Engl J Med 2014; 370 (23) 2163-2165
- 110 Liu D, Wang X, Pan F. , et al. Harmonization of health data at national level: a pilot study in China. Int J Med Inform 2010; 79 (06) 450-458
- 111 Bauer CR, Ganslandt T, Baum B. , et al. Integrated data repository toolkit (IDRT). A suite of programs to facilitate health analytics on heterogeneous medical data. Methods Inf Med 2016; 55 (02) 125-135
- 112 Chen C, Haddad D, Selsky J. , et al. Making sense of mobile health data: an open architecture to improve individual- and population-level health. J Med Internet Res 2012; 14 (04) e112
- 113 Nogueira JR, Cook TW, Cavalini LT. Mapping a nursing terminology subset to openEHR archetypes. A case study of the international classification for nursing practice. Methods Inf Med 2015; 54 (03) 271-275
- 114 Hägglund M, Chen R, Koch S. Modeling shared care plans using CONTsys and openEHR to support shared homecare of the elderly. J Am Med Inform Assoc 2011; 18 (01) 66-69
- 115 Bettencourt-Silva J, De La Iglesia B, Donell S, Rayward-Smith V. On creating a patient-centric database from multiple hospital information systems. Methods Inf Med 2012; 51 (03) 210-220
- 116 Moreno-Conde A, Jódar-Sánchez F, Kalra D. Requirements for clinical information modelling tools. Int J Med Inform 2015; 84 (07) 524-536
- 117 Mandl KD, Kohane IS, McFadden D. , et al. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture. J Am Med Inform Assoc 2014; 21 (04) 615-620
- 118 Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc 2016; 23 (05) 899-908
- 119 Marcos C, González-Ferrer A, Peleg M, Cavero C. Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7's Virtual Medical Record standard. J Am Med Inform Assoc 2015; 22 (03) 587-599
- 120 Ancker JS, Witteman HO, Hafeez B, Provencher T, Van de Graaf M, Wei E. The invisible work of personal health information management among people with multiple chronic conditions: qualitative interview study among patients and providers. J Med Internet Res 2015; 17 (06) e137
- 121 Mandl KD, Mandel JC, Murphy SN. , et al. The SMART Platform: early experience enabling substitutable applications for electronic health records. J Am Med Inform Assoc 2012; 19 (04) 597-603
- 122 Legaz-García MC, Menárguez-Tortosa M, Fernández-Breis JT, Chute CG, Tao C. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes. J Am Med Inform Assoc 2015; 22 (03) 536-544
- 123 Goldspiel BR, Flegel WA, DiPatrizio G. , et al. Integrating pharmacogenetic information and clinical decision support into the electronic health record. J Am Med Inform Assoc 2014; 21 (03) 522-528
- 124 Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG. Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med Inform Assoc 2010; 17 (05) 568-574
- 125 Nishimura AA, Shirts BH, Salama J, Smith JW, Devine B, Tarczy-Hornoch P. Physician perspectives of CYP2C19 and clopidogrel drug-gene interaction active clinical decision support alerts. Int J Med Inform 2016; 86: 117-125
- 126 Warner JL, Rioth MJ, Mandl KD. , et al. SMART precision cancer medicine: a FHIR-based app to provide genomic information at the point of care. J Am Med Inform Assoc 2016; 23 (04) 701-710
- 127 Anand V, Rosenman MB, Downs SM. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record. Int J Med Inform 2013; 82 (09) 864-874
- 128 Yang H. Automatic extraction of medication information from medical discharge summaries. J Am Med Inform Assoc 2010; 17 (05) 545-548
- 129 Turley M, Wang S, Meng D, Kanter MH, Garrido T. An information model for automated assessment of concordance between advance care preferences and care delivered near the end of life. J Am Med Inform Assoc 2016; 23 (e1, no. e1): e118-e124
- 130 Cascade E, Marr P, Winslow M, Burgess A, Nixon M. Conducting research on the Internet: medical record data integration with patient-reported outcomes. J Med Internet Res 2012; 14 (05) e137
- 131 Estabrooks PA, Boyle M, Emmons KM. , et al. Harmonized patient-reported data elements in the electronic health record: supporting meaningful use by primary care action on health behaviors and key psychosocial factors. J Am Med Inform Assoc 2012; 19 (04) 575-582
- 132 Chung AE, Basch EM. Incorporating the patient's voice into electronic health records through patient-reported outcomes as the “review of systems”. J Am Med Inform Assoc 2015; 22 (04) 914-916
- 133 Ohno-Machado L. Informatics 2.0: implications of social media, mobile health, and patient-reported outcomes for healthcare and individual privacy. J Am Med Inform Assoc 2012; 19 (05) 683-683
- 134 Harle CA, Listhaus A, Covarrubias CM. , et al. Overcoming barriers to implementing patient-reported outcomes in an electronic health record: a case report. J Am Med Inform Assoc 2016; 23 (01) 74-79
- 135 White RW, Tatonetti NP, Shah NH, Altman RB, Horvitz E. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc 2013; 20 (03) 404-408
- 136 Richesson RL, Rusincovitch SA, Wixted D. , et al. A comparison of phenotype definitions for diabetes mellitus. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e319-e326
- 137 Chen Y, Carroll RJ, Hinz ER. , et al. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e253-e259
- 138 Shivade C, Raghavan P, Fosler-Lussier E. , et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc 2014; 21 (02) 221-230
- 139 Falck S, Adimadhyam S, Meltzer DO, Walton SM, Galanter WL. A trial of indication based prescribing of antihypertensive medications during computerized order entry to improve problem list documentation. Int J Med Inform 2013; 82 (10) 996-1003
- 140 Ni Y, Kennebeck S, Dexheimer JW. , et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. J Am Med Inform Assoc 2015; 22 (01) 166-178
- 141 Davis MF, Sriram S, Bush WS, Denny JC, Haines JL. Automated extraction of clinical traits of multiple sclerosis in electronic medical records. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e334-e340
- 142 Bellows BK, LaFleur J, Kamauu AW. , et al. Automated identification of patients with a diagnosis of binge eating disorder from narrative electronic health records. J Am Med Inform Assoc 2014; 21 (e1, no. e1): e163-e168
- 143 Lin C, Karlson EW, Dligach D. , et al. Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic medical record. J Am Med Inform Assoc 2015; 22 (e1, no. e1): e151-e161
- 144 Fan J, Arruda-Olson AM, Leibson CL. , et al. Billing code algorithms to identify cases of peripheral artery disease from administrative data. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e349-e354
- 145 Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc 2015; 22 (e1, no. e1): e141-e150
- 146 Wei W-Q, Teixeira PL, Mo H, Cronin RM, Warner JL, Denny JC. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. J Am Med Inform Assoc 2016; 23 (e1, no. e1): e20-e27
- 147 Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ. Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis. J Am Med Inform Assoc 2014; 21 (05) 801-807
- 148 Walker AM, Zhou X, Ananthakrishnan AN. , et al. Computer-assisted expert case definition in electronic health records. Int J Med Inform 2016; 86: 62-70
- 149 Rosenman M, He J, Martin J. , et al. Database queries for hospitalizations for acute congestive heart failure: flexible methods and validation based on set theory. J Am Med Inform Assoc 2014; 21 (02) 345-352
- 150 Nelson HD, Weerasinghe R, Martel M. , et al. Development of an electronic breast pathology database in a community health system. J Pathol Inform 2014; 5 (01) 26
- 151 Richesson RL, Hammond WE, Nahm M. , et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH Health Care Systems Collaboratory. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e226-e231
- 152 Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e206-e211
- 153 Pradhan S, Elhadad N, South BR. , et al. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J Am Med Inform Assoc 2015; 22 (01) 143-154
- 154 D'Avolio LW, Nguyen TM, Farwell WR. , et al. Evaluation of a generalizable approach to clinical information retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc 2010; 17 (04) 375-382
- 155 Tate AR, Beloff N, Al-Radwan B. , et al. Exploiting the potential of large databases of electronic health records for research using rapid search algorithms and an intuitive query interface. J Am Med Inform Assoc 2014; 21 (02) 292-298
- 156 Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 2016; 23 (05) 1007-1015
- 157 Hota B, Lin M, Doherty JA. , et al; CDC Prevention Epicenter Program. Formulation of a model for automating infection surveillance: algorithmic detection of central-line associated bloodstream infection. J Am Med Inform Assoc 2010; 17 (01) 42-48
- 158 Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc 2014; 21 (02) 315-325
- 159 Wiley LK, Shah A, Xu H, Bush WS. ICD-9 tobacco use codes are effective identifiers of smoking status. J Am Med Inform Assoc 2013; 20 (04) 652-658
- 160 Lyalina S, Percha B, LePendu P, Iyer SV, Altman RB, Shah NH. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e297-e305
- 161 Strauss JA, Chao CR, Kwan ML, Ahmed SA, Schottinger JE, Quinn VP. Identifying primary and recurrent cancers using a SAS-based natural language processing algorithm. J Am Med Inform Assoc 2013; 20 (02) 349-355
- 162 Wei W-Q, Leibson CL, Ransom JE. , et al. Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus. J Am Med Inform Assoc 2012; 19 (02) 219-224
- 163 Ye Y, Tsui FR, Wagner M, Espino JU, Li Q. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J Am Med Inform Assoc 2014; 21 (05) 815-823
- 164 Cartagena FP, Schaeffer M, Rifai D, Doroshenko V, Goldberg HS. Leveraging the NLM map from SNOMED CT to ICD-10-CM to facilitate adoption of ICD-10-CM. J Am Med Inform Assoc 2015; 22 (03) 659-670
- 165 Heintzelman NH, Taylor RJ, Simonsen L. , et al. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. J Am Med Inform Assoc 2013; 20 (05) 898-905
- 166 Pathak J, Wang J, Kashyap S. , et al. Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. J Am Med Inform Assoc 2011; 18 (04) 376-386
- 167 Mani S, Ozdas A, Aliferis C. , et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc 2014; 21 (02) 326-336
- 168 Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 2013; 20 (01) 117-121
- 169 Marafino BJ, Davies JM, Bardach NS, Dean ML, Dudley RA. N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit. J Am Med Inform Assoc 2014; 21 (05) 871-875
- 170 Pathak J, Bailey KR, Beebe CE. , et al. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e341-e348
- 171 Kirby JC, Speltz P, Rasmussen LV. , et al. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability. J Am Med Inform Assoc 2016; 23 (06) 1046-1052
- 172 Bejan CA, Xia F, Vanderwende L, Wurfel MM, Yetisgen-Yildiz M. Pneumonia identification using statistical feature selection. J Am Med Inform Assoc 2012; 19 (05) 817-823
- 173 Carroll RJ, Thompson WK, Eyler AE. , et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. J Am Med Inform Assoc 2012; 19 (e1, no. e1): e162-e169
- 174 Syed-Abdul S, Moldovan M, Nguyen PA. , et al. Profiling phenome-wide associations: a population-based observational study. J Am Med Inform Assoc 2015; 22 (04) 896-899
- 175 Xu J, Rasmussen LV, Shaw PL. , et al. Review and evaluation of electronic health records-driven phenotype algorithm authoring tools for clinical and translational research. J Am Med Inform Assoc 2015; 22 (06) 1251-1260
- 176 Warner JL, Denny JC, Kreda DA, Alterovitz G. Seeing the forest through the trees: uncovering phenomic complexity through interactive network visualization. J Am Med Inform Assoc 2015; 22 (02) 324-329
- 177 Warner JL, Zollanvari A, Ding Q, Zhang P, Snyder GM, Alterovitz G. Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications. J Am Med Inform Assoc 2013; 20 (e2, no. e2): e281-e287
- 178 Wei W-Q, Leibson CL, Ransom JE, Kho AN, Chute CG. The absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjects. Int J Med Inform 2013; 82 (04) 239-247
- 179 Buckley JM, Coopey SB, Sharko J. , et al. The feasibility of using natural language processing to extract clinical information from breast pathology reports. J Pathol Inform 2012; 3: 23
- 180 Yu S, Liao KP, Shaw SY. , et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources. J Am Med Inform Assoc 2015; 22 (05) 993-1000
- 181 Huang SH, LePendu P, Iyer SV, Tai-Seale M, Carrell D, Shah NH. Toward personalizing treatment for depression: predicting diagnosis and severity. J Am Med Inform Assoc 2014; 21 (06) 1069-1075
- 182 Chase HS, Radhakrishnan J, Shirazian S, Rao MK, Vawdrey DK. Under-documentation of chronic kidney disease in the electronic health record in outpatients. J Am Med Inform Assoc 2010; 17 (05) 588-594
- 183 Kho AN, Hayes MG, Rasmussen-Torvik L. , et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc 2012; 19 (02) 212-218
- 184 Mahajan R, Moorman AC, Liu SJ, Rupp L, Klevens RM. ; Chronic Hepatitis Cohort Study (CHeCS) investigators*. Use of the International Classification of Diseases, 9th revision, coding in identifying chronic hepatitis B virus infection in health system data: implications for national surveillance. J Am Med Inform Assoc 2013; 20 (03) 441-445
- 185 Savard N, Bédard L, Allard R, Buckeridge DL. Using age, triage score, and disposition data from emergency department electronic records to improve Influenza-like illness surveillance. J Am Med Inform Assoc 2015; 22 (03) 688-696
- 186 Trinh N-HT, Youn SJ, Sousa J. , et al. Using electronic medical records to determine the diagnosis of clinical depression. Int J Med Inform 2011; 80 (07) 533-540
- 187 Rahimi A, Liaw S-T, Taggart J, Ray P, Yu H. Validating an ontology-based algorithm to identify patients with type 2 diabetes mellitus in electronic health records. Int J Med Inform 2014; 83 (10) 768-778