Hamostaseologie 2015; 35(01): 17-24
DOI: 10.5482/HAMO-14-09-0038
Review
Schattauer GmbH

The vulnerable myocardium

Diabetic cardiomyopathyDiabetische KardiomyopathieEin gefährdetes Herz
H. Bugger
1   Heart Center Freiburg University, Cardiology and Angiology I, Freiburg, BW, Germany
,
C. Bode
1   Heart Center Freiburg University, Cardiology and Angiology I, Freiburg, BW, Germany
› Author Affiliations
Further Information

Publication History

received: 01 September 2014

accepted in revised form: 11 November 2014

Publication Date:
28 December 2017 (online)

Summary

Cardiovascular disease is the major cause of morbidity and mortality in subjects suffering from diabetes mellitus. While coronary artery disease is the leading cause of cardiac complications in diabetics, it is widely recognized that diabetes increases the risk for the development of heart failure independently of coronary heart disease and hypertension. This increased susceptibility of the diabetic heart to develop structural and functional impairment is termed diabetic cardiomyopathy. The number of different mechanisms proposed to contribute to diabetic cardiomyopathy is steadily increasing and underlines the complexity of this cardiac entity.

In this review the mechanisms that account for the increased myocardial vulnerability in diabetic cardiomyopathy are discussed.

Zusammenfassung

Kardiovaskuläre Erkrankungen sind die Hauptursache von Morbidität und Mortalität im Diabetes mellitus. Kardiale Komplikationen sind meist die Folge einer koronaren Herzerkrankung. Mittlerweile wird zunehmend wahrgenommen, dass Diabetes unabhängig von koronarer Herzerkrankung und Bluthochdruck das Risiko für die Entwicklung einer Herzinsuffizienz erhöht. Diese Prädisposition, sowohl strukturelle als auch funktionelle Beeinträchtigungen zu entwickeln, wird auch als diabetische Kardiomyopathie bezeichnet. Die wachsende Zahl unterschiedlicher Mechanismen, die als Ursache diskutiert werden, unterstreichen die Komplexität dieser kardialen Entität.

In dieser Übersicht sollen die Mechanismen erläutert werden, die der diabetischen Kardiomyopathie zugrunde liegen.

 
  • References

  • 1 Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434-444.
  • 2 Miettinen H, Lehto S, Salomaa V. et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 1998; 21: 69-75.
  • 3 Rubler S, Dlugash J, Yuceoglu YZ. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30: 595-602.
  • 4 Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979; 241: 2035-2058.
  • 5 De Simone G, Devereux RB, Chinali M. et al. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens 2010; 28: 353-260.
  • 6 Lee M, Gardin JM, Lynch JC. et al. Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 1997; 133: 36-43.
  • 7 Fang ZY, Schull-Meade R, Leano R. et al. Screening for heart disease in diabetic subjects. Am Heart J 2005; 149: 349-354.
  • 8 Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996; 93: 1905-1912.
  • 9 Bidasee KR, Zhang Y, Shao CH. et al. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 2004; 53: 463-473.
  • 10 Kranstuber AL, Del Rio C, Biesiadecki BJ. et al. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol 2012; 03: 292.
  • 11 Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25: 2185-2197.
  • 12 Tikellis C, Thomas MC, Harcourt BE. et al. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab 2008; 295: E323-E330.
  • 13 Ma H, Li SY, Xu P. et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2009; 13: 1751-1764.
  • 14 Regan TJ, Lyons MM, Ahmed SS. et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977; 60: 884-899.
  • 15 Shimizu M, Umeda K, Sugihara N. et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 1993; 46: 32-36.
  • 16 Singh VP, Le B, Khode R. et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 2008; 57: 3297-3306.
  • 17 Mizushige K, Yao L, Noma T. et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 2000; 101: 899-907.
  • 18 Chiu J, Farhangkhoee H, Xu BY. et al. PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol 2008; 45: 385-393.
  • 19 Van Linthout S, Seeland U, Riad A. et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 2008; 103: 319-327.
  • 20 Diamant M, Lamb HJ, Smit JW. et al. Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation. Diabetologia 2005; 48: 1669-1670.
  • 21 Tschope C, Walther T, Escher F. et al. Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J 2005; 19: 2057-2059.
  • 22 Westermann D, Rutschow S, Jager S. et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 2007; 56: 641-646.
  • 23 Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther 2013; 345: 239-249.
  • 24 Westermann D, Van Linthout S, Dhayat S. et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 2007; 56: 1834-1841.
  • 25 Westermann D, Rutschow S, Van Linthout S. et al. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 2006; 49: 2507-2513.
  • 26 Westermann D, Van Linthout S, Dhayat S. et al. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 2007; 102: 500-507.
  • 27 Frustaci A, Kajstura J, Chimenti C. et al. Myocardial cell death in human diabetes. Circ Res 2000; 87: 1123-1132.
  • 28 Cai L, Li W, Wang G. et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002; 51: 1938-1948.
  • 29 Huynh K, Kiriazis H, Du XJ. et al. Targeting the up-regulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 2013; 60: 307-317.
  • 30 Varma A, Das A, Hoke NN. et al. Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 2012; 07: e45243.
  • 31 Chowdhry MF, Vohra HA, Galinanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: role of caspases and poly-adenosine diphosphate-ribose polymerase. J Thorac Cardiovasc Surg 2007; 134: 124-31. 31 e1-3..
  • 32 Kajstura J, Fiordaliso F, Andreoli AM. et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001; 50: 1414-1424.
  • 33 Sari FR, Watanabe K, Thandavarayan RA. et al. 14–3–3 protein protects against cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis in experimental diabetes. J Pharmacol Sci 2010; 113: 325-334.
  • 34 Bojunga J, Nowak D, Mitrou PS. et al. Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 2004; 47: 2072-2080.
  • 35 Brown L, Wall D, Marchant C, Sernia C. Tissuespecific changes in angiotensin II receptors in streptozotocin-diabetic rats. J Endocrinol 1997; 154: 355-362.
  • 36 Belke DD, Swanson EA, Dillmann WH. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 2004; 53: 3201-3208.
  • 37 Fauconnier J, Lanner JT, Zhang SJ. et al. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes 2005; 54: 2375-2381.
  • 38 Li SY, Yang X, Ceylan-Isik AF. et al. Cardiac contractile dysfunction in Lep/Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase and myosin heavy chain isozyme switch. Diabetologia 2006; 49: 1434-1446.
  • 39 Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol 1996; 271: H192-H202.
  • 40 Kralik PM, Ye G, Metreveli NS. et al. Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol 2005; 05: 285-292.
  • 41 Bugger H, Boudina S, Hu XX. et al. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes 2008; 57: 2924-2932.
  • 42 Buchanan J, Mazumder PK, Hu P. et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 2005; 146: 5341-5349.
  • 43 Peterson LR, Herrero P, Schechtman KB. et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004; 109: 2191-2196.
  • 44 Gibbs EM, Stock JL, McCoid SC. et al. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter. J Clin Invest 1995; 95: 1512-1518.
  • 45 Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 2000; 279: E1104-E1113.
  • 46 Wright JJ, Kim J, Buchanan J. et al. Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 2009; 82: 351-360.
  • 47 Mazumder PK, O’Neill BT, Roberts MW. et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004; 53: 2366-2374.
  • 48 Boudina S, Sena S, Theobald H. et al. Mitochondrial energetics in the heart in obesity-related diabetes. Diabetes 2007; 56: 2457-2466.
  • 49 Bugger H. Abel Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 2008; 114: 195-210.
  • 50 Boudina S, Bugger H, Sena S. et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 2009; 119: 1272-1283.
  • 51 Bugger H, Riehle C, Jaishy B. et al. Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. J Mol Cell Cardiol 2012; 52: 1019-1026.
  • 52 Bugger H. Abel Rodent models of diabetic cardiomyopathy. Dis Model Mech 2009; 02: 454-466.
  • 53 Ng AC, Delgado V, Bertini M. et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 2010; 122: 2538-2544.
  • 54 Listenberger LL, Han X, Lewis SE. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 2003; 100: 3077-3082.
  • 55 Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 2013; 10: 109-121.
  • 56 Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramideindependent pathway. J Biol Chem 2001; 276: 14890-14895.
  • 57 Ostrander DB, Sparagna GC, Amoscato AA. et al. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 2001; 276: 38061-38067.
  • 58 Borradaile NM, Han X, Harp JD. et al. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 2006; 47: 2726-2737.
  • 59 Brookheart RT, Michel CI, Listenberger LL. et al. The non-coding RNA gadd7 is a regulator of lipidinduced oxidative and endoplasmic reticulum stress. J Biol Chem 2009; 284: 7446-7454.
  • 60 Zhou YT, Grayburn P, Karim A. et al. Lipotoxic heart disease in obese rats. Proc Natl Acad Sci USA 2000; 97: 1784-1789.
  • 61 Anderson EJ, Kypson AP, Rodriguez E. et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 2009; 54: 1891-1898.
  • 62 Konig A, Bode C, Bugger H. Diabetes mellitus and myocardial mitochondrial dysfunction. Heart Fail Clin 2012; 08: 551-561.
  • 63 Lashin OM, Szweda PA, Szweda LI, Romani AM. Decreased complex II respiration and HNE-modified SDH subunit in diabetic heart. Free Radic Biol Med 2006; 40: 886-896.
  • 64 Turko IV, Li L, Aulak KS. et al. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 2003; 278: 33972-33977.
  • 65 Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 2006; 55: 798-805.
  • 66 Ye G, Metreveli NS, Donthi RV. et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 2004; 53: 1336-1343.
  • 67 Serpillon S, Floyd BC, Gupte RS. et al. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. Am J Physiol Heart Circ Physiol 2009; 297: H153-H162.
  • 68 Wold LE, Ceylan-Isik AF, Fang CX. et al. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med 2006; 40: 1419-1429.
  • 69 Lakshmanan AP, Harima M, Suzuki K. et al. The hyperglycemia stimulated myocardial endoplasmic reticulum stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats. Int J Biochem Cell Biol 2013; 45: 438-447.
  • 70 Li Z, Zhang T, Dai H. et al. Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats. J Clin Biochem Nutr 2007; 41: 58-67.
  • 71 Liu ZW, Zhu HT, Chen KL. et al. Protein kinase RNA-like ndoplasmic reticulum kinase signaling pathway plays a major role in reactive oxygen species mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12: 158.
  • 72 Jordan SD, Kruger M, Willmes DM. et al. Obesityinduced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434-446.
  • 73 Trajkovski M, Hausser J, Soutschek J. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649-653.
  • 74 Chavali V, Tyagi SC, Mishra PK. Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/−Akita hearts. Cell Biochem Biophys 2014; 68: 25-35.
  • 75 Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn 2nd GW, Chakrabarti S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 2014; 18: 415-421.
  • 76 Blumensatt M, Greulich S, Herzfeld Dde Wiza, et al. Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143. Cardiovasc Res 2013; 100: 201-210.
  • 77 Zhou Q, Lv D, Chen P. et al. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front Genet 2014; 05: 185.
  • 78 Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 06: 463-477.
  • 79 Matsui Y, Takagi H, Qu X. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007; 100: 914-922.
  • 80 Zhu H, Tannous P, Johnstone JL. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007; 117: 1782-1793.
  • 81 Xie Z, Lau K, Eby B. et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011; 60: 1770-1778.
  • 82 Xu X, Kobayashi S, Chen K. et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 2013; 288: 18077-18092.
  • 83 McKinsey TA. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol 2011; 51: 491-496.
  • 84 Gaikwad AB, Sayyed SG, Lichtnekert J. et al. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am J Pathol 2010; 176: 1079-1083.
  • 85 Monkemann H, De Vriese AS, Blom HJ. et al. Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids 2002; 23: 331-336.
  • 86 Sloan C, Tuinei J, Nemetz K. et al. Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes 2011; 60: 1424-1434.
  • 87 Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res 2002; 512: 121-134.
  • 88 Wold LE, Ren J. Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 map kinase-dependent oxidative stress mechanism. Biochem Biophys Res Commun 2004; 318: 1066-1071.