Hamostaseologie 2015; 35(01): 37-46
DOI: 10.5482/HAMO-14-09-0042
Review
Schattauer GmbH

Protective and pathological roles of tissue factor in the heart

Protektive und pathologische Eigenschaften von Tissue Factor im Herzen
M. F. Bode
1   Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
1   Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
,
N. Mackman
1   Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
2   Department of Medicine, Division of Haematology and Oncology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
› Author Affiliations
This work was supported by the National Institutes of Health grant HL006350. We would like to thank Silvio Antoniak and Weeranun Bode for critical reading of the manuscript.
Further Information

Publication History

received: 04 September 2014

accepted in revised form: 19 November 2014

Publication Date:
28 December 2017 (online)

Summary

Tissue factor (TF) is expressed in the heart where it is required for haemostasis. High levels of TF are also expressed in atherosclerotic plaques and likely contribute to atherothrombosis after plaque rupture. Indeed, risk factors for atherothrombosis, such as diabetes, hypercholesterolaemia, smoking and hypertension, are associated with increased TF expression in circulating monocytes, microparticles and plasma. Several therapies that reduce atherothrombosis, such as statins, ACE inhibitors, beta-blockers and anti-platelet drugs, are associated with reduced TF expression. In addition to its haemostatic and pro-thrombotic functions, the TF : FVIIa complex and downstream coagulation proteases activate cells by cleavage of protease-activated receptors (PARs). In mice, deficiencies in either PAR-1 or PAR-2 reduce cardiac remodelling and heart failure after ischaemia-reperfusion injury. This suggests that inhibition of coagulation proteases and PARs may be protective in heart attack patients. In contrast, the TF/thrombin/ PAR-1 pathway is beneficial in a mouse model of Coxsackievirus B3-induced viral myocarditis. We found that stimulation of PAR-1 increases the innate immune response by enhancing TLR3-dependent IFN-_ expression. Therefore, inhibition of the TF/thrombin/PAR-1 pathway in patients with viral myocarditis could have detrimental effects. Conclusion: The TF : FVIIa complex has both protective and pathological roles in the heart.

Zusammenfassung

Tissue Factor (TF, Faktor III, Gewebsthromboplastin) wird im Herzen exprimiert, wo er für die effektive Hämostase benötigt wird. TF wird auch in atherosklerotischen Plaques exprimiert und trägt sehr wahrscheinlich zur Atherothrombose nach Plaque-ruptur bei. Risikofaktoren für Atherothrombose, wie Diabetes mellitus, Hypercholesterinämie, Rauchen und Bluthochdruck sind mit erhöhter TF-Expression auf zirkulierenden Monozyten, Mikropartikeln und im Plasma assoziiert. Therapien gegen Atherothrombose (z. B. Statine, ACEHemmer, Betablocker und Plättcheninhibitoren) sind mit reduzierter TF-Expression assoziiert. Zusätzlich zu den hämostatischen und pro-thrombotischen Funktionen aktiviert der TF : FVIIa-Komplex zusammen mit nachgeschalteten Gerinnungsfaktoren Zellen durch Aktivierung von Protease-aktivierten Rezeptoren (PARs). In PAR-1- und PAR-2-defizienten Mäusen ist das kardiale Remodelling und die Herzinsuffizienz nach einem kardialen Reperfusionsschaden reduziert. Folglich könnte eine Inhibition von Gerinnungsfaktoren und PARs positive Effekte in Herzinfarkt- Patienten haben. Im Gegensatz dazu ist die Aktivierung des TF/Thrombin/PAR-1-Signalweges in einem Mausmodell von Coxsackievirus- B3-induzierter Myokarditis von Vorteil. Unsere Ergebnisse zeigen, dass die Stimulierung von PAR-1 die angeborene Immunantwort durch TLR3-abhängige Interferon-Expression verstärkt. Demzufolge könnte die Inhibition des TF/Thrombin/PAR-1-Signalweges in Patienten mit viraler Myokarditis fatale Folgen haben. Schlussfolgerung: Die Daten weisen darauf hin, dass der TF : FVIIa-Komplex im Herzen abhängig vom Krankheitsbild sowohl protektive als auch pathologische Eigenschaften vermitteln kann.

 
  • References

  • 1 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24: 1015-1022.
  • 2 Williams JC, Mackman N. Tissue factor in health and disease. Front Biosci (Elite Ed) 2012; 04: 358-372.
  • 3 Nemerson Y. Tissue factor and hemostasis. Blood 1988; 71: 1-8.
  • 4 Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 1687-1693.
  • 5 Østerud B, Bjørklid E. Sources of tissue factor. Semin Thromb Hemost 2006; 32: 11-23.
  • 6 Broze GJ. Tissue factor pathway inhibitor. Thromb Haemost 1995; 74: 90-93.
  • 7 Morel O, Toti F, Hugel B. et al. Procoagulant microparticles: disrupting the vascular homeostasis equation?. Arterioscler Thromb Vasc Biol 2006; 26: 2594-2604.
  • 8 Diamant M, Tushuizen ME, Sturk A. et al. Cellular microparticles: new players in the field of vascular disease?. Eur J Clin Invest 2004; 34: 392-401.
  • 9 Egorina EM, Sovershaev MA, Bjørkøy G. et al. Intracellular and surface distribution of monocyte tissue factor. Arterioscler Thromb Vasc Biol 2005; 25: 1493-1498.
  • 10 Biró E, Sturk-Maquelin KN, Vogel GMT. et al. Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 2003; 01: 2561-2568.
  • 11 Davila M, Amirkhosravi A, Coll E. et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 2008; 06: 1517-1524.
  • 12 Thomas GM, Panicot-Dubois L, Lacroix R. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206: 1913-1927.
  • 13 Johnson GJ, Leis LA, Bach RR. Tissue factor activity of blood mononuclear cells is increased after total knee arthroplasty. Thromb Haemost 2009; 102: 728-734.
  • 14 Khorana AA, Francis CW, Menzies KE. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 2008; 06: 1983-1985.
  • 15 Lee RD, Barcel DA, Williams JC. et al. Pre-analytical and analytical variables affecting the measurement of plasma-derived microparticle tissue factor activity. Thromb Res 2012; 129: 80-85.
  • 16 Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Hemost 2010; 36: 865-875.
  • 17 Tatsumi K, Antoniak S, Monroe DM. et al. Evaluation of a new commercial assay to measure microparticle tissue factor activity in plasma. J Thromb Haemost 2014; 12: 1932-1934.
  • 18 Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Am J Pathol 1989; 134: 1087-1097.
  • 19 Pawlinski R, Fernandes A, Kehrle B. et al. Tissue factor deficiency causes cardiac fibrosis and left ventricular dysfunction. Proc Natl Acad Sci USA 2002; 99: 15333-15338.
  • 20 Parry GC, Erlich JH, Carmeliet P. et al. Low levels of tissue factor are compatible with development and hemostasis in mice. J Clin Invest 1998; 101: 560-569.
  • 21 Pawlinski R, Tencati M, Holscher T. et al. Role of cardiac myocyte tissue factor in heart hemostasis. J Thromb Haemost 2007; 05: 1693-1700.
  • 22 Corti R, Fuster V, Badimon JJ. Pathogenetic concepts of acute coronary syndromes. J Am Coll Cardiol 2003; 41: S7-S14.
  • 23 Davies MJ, Thomas AC. Plaque fissuring- the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985; 53: 363-373.
  • 24 Thygesen K, Alpert JS, Jaffe AS. et al. Third universal definition of myocardial infarction. J Am Coll Cardiol 2012; 60: 1581-1598.
  • 25 Feldman JA, Fish SS, Beshansky JR. et al. Acute cardiac ischemia in patients with cocaine-associated complaints. Ann Emerg Med 2000; 36: 469-476.
  • 26 Cannon CP, Weintraub WS, Demopoulos LA. et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med 2001; 344: 1879-1887.
  • 27 Roe MT, Messenger JC, Weintraub WS. et al. Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. J Am Coll Cardiol 2010; 56: 254-263.
  • 28 Fitzgerald DJ, Roy L, Catella F. et al. Platelet activation in unstable coronary disease. N Engl J Med 1986; 315: 983-989.
  • 29 Fernández-Ortiz A, Badimon JJ, Falk E. et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components. J Am Coll Cardiol 1994; 23: 1562-1569.
  • 30 Toschi V, Gallo R, Lettino M. et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95: 594-599.
  • 31 Ardissino D, Merlini PA, Ariëns R. et al. Tissue-factor antigen and activity in human coronary atherosclerotic plaques. Lancet 1997; 349: 769-771.
  • 32 Palmerini T, Tomasi L, Barozzi C. et al. Detection of tissue factor antigen and coagulation activity in coronary artery thrombi isolated from patients with ST-segment elevation acute myocardial infarction. PLoS One 2013; 08: e81501.
  • 33 Mallat Z, Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease. Circ Res 2001; 88: 998-1003.
  • 34 Butenas S, Undas A, Gissel MT. et al. Factor XIa and tissue factor activity in patients with coronary artery disease. Thromb Haemost 2008; 99: 142-149.
  • 35 Falciani M, Goria M, Fedi S. et al. Elevated tissue factor and tissue factor pathway inhibitor circulating levels in ischaemic heart disease patients. Thromb Haemost 1998; 79: 495-499.
  • 36 Annex BH, Denning SM, Channon KM. et al. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 1995; 91: 619-622.
  • 37 Marmur JD, Thiruvikraman S V, Fyfe BS. et al. Identification of active tissue factor in human coronary atheroma. Circulation 1996; 94: 1226-1232.
  • 38 Morel O, Pereira B, Averous G. et al. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction. Atherosclerosis 2009; 204: 636-641.
  • 39 Steppich B a, Braun SL, Stein A. et al. Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction. Thromb J 2009; 07: 11.
  • 40 Matsumoto N, Nomura S, Kamihata H. et al. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost 2004; 91: 146-154.
  • 41 Soejima H, Ogawa H, Yasue H. et al. Heightened tissue factor associated with tissue factor pathway inhibitor and prognosis in patients with unstable angina. Circulation 1999; 99: 2908-2913.
  • 42 Campo G, Valgimigli M, Ferraresi P. et al. Tissue factor and coagulation factor VII levels during acute myocardial infarction. Arterioscler Thromb Vasc Biol 2006; 26: 2800-2806.
  • 43 Van Dreden P, Rousseau A, Savoure A. et al. Plasma thrombomodulin activity, tissue factor activity and high levels of circulating procoagulant phospholipid as prognostic factors for acute myocardial infarction. Blood Coagul Fibrinolysis 2009; 20: 635-641.
  • 44 Sambola A, García BDel Blanco, Francisco J. et al. Prognostic impact of tissue factor pathway on long-term ischemic events of ST-elevated myocardial infarction treated with a primary percutaneous coronary intervention. Int J Cardiol 2013; 168: 2916-2918.
  • 45 Badimon JJ, Lettino M, Toschi V. et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques. Circulation 1999; 99: 1780-1787.
  • 46 Roqué M, Reis ED, Fuster V. et al. Inhibition of tissue factor reduces thrombus formation and intimal hyperplasia after porcine coronary angioplasty. J Am Coll Cardiol 2000; 36: 2303-2310.
  • 47 Figueras J, Monasterio J, Lidón RM. et al. Lower tissue factor inhibition in patients with ST segment elevation than in patients with non ST elevation acute myocardial infarction. Thromb Res 2012; 130: 458-462.
  • 48 Westrick RJ, Bodary PF, Xu Z. et al. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001; 103: 3044-3046.
  • 49 Kuijpers MJE, van der Meijden PEJ, Feijge M a H. et al. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler Thromb Vasc Biol 2014; 34: 1674-1680.
  • 50 Mackman N. New targets for atherothrombosis. Arterioscler Thromb Vasc Biol 2014; 34: 1607-1608.
  • 51 Bierhaus A, Illmer T, Kasper M. et al. Advanced glycation end product-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 1997; 96: 2262-2271.
  • 52 Bierhaus A, Chevion S, Chevion M. et al. Advanced glycation end product-induced activation of NFkappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997; 46: 1481-1490.
  • 53 Lim HS, Blann AD, Lip GYH. Soluble CD40 ligand, soluble P-selectin, interleukin-6, and tissue factor in diabetes mellitus. Circulation 2004; 109: 2524-2528.
  • 54 Sambola A, Osende J, Hathcock J. et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 2003; 107: 973-977.
  • 55 Kislinger T, Tanji N, Wendt T. et al. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2001; 21: 905-910.
  • 56 Parry GC, Mackman N. Transcriptional regulation of tissue factor expression in human endothelial cells. Arterioscler Thromb Vasc Biol 1995; 15: 612-621.
  • 57 Guha M, O’Connell MA, Pawlinski R. et al. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 2001; 98: 1429-1439.
  • 58 Oeth P, Parry GC, Mackman N. Regulation of the tissue factor gene in human monocytic cells. Role of AP-1, NF-kappa B/Rel, and Sp1 proteins in uninduced and lipopolysaccharide-induced expression. Arterioscler Thromb Vasc Biol 1997; 17: 365-374.
  • 59 Bode M, Mackman N. Regulation of tissue factor gene expression in monocytes and endothelial cells. Vascul Pharmacol 2014; 62: 57-62.
  • 60 Aljada A, Ghanim H, Mohanty P. et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 expression in mononuclear cells and reduces plasma tissue factor and plasminogen activator inhibitor-1 concentrations. J Clin Endocrinol Metab 2002; 87: 1419-1422.
  • 61 Ha YM, Park EJ, Kang YJ. et al. Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions. J Cell Mol Med 2014; 18: 2031-2043.
  • 62 Drake T a, Hannani K, Fei HH. et al. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 1991; 138: 601-607.
  • 63 Owens AP, Passam FH, Antoniak S. et al. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 2012; 122: 558-568.
  • 64 Wada H, Kaneko T, Wakita Y. et al. Effect of lipoproteins on tissue factor activity and PAI-II antigen in human monocytes and macrophages. Int J Cardiol 1994; 47 (1 Suppl|): S21-S25.
  • 65 Cui MZ, Penn MS, Chisolm GM. Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem 1999; 274: 32795-32802.
  • 66 Li M, Yu D, Williams KJ. et al. Tobacco smoke induces the generation of procoagulant micro- vesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol 2010; 30: 1818-1824.
  • 67 Matetzky S, Tani S, Kangavari S. et al. Smoking increases tissue factor expression in atherosclerotic plaques. Circulation 2000; 102: 602-604.
  • 68 He M, He X, Xie Q. et al. Angiotensin II induces the expression of tissue factor and its mechanism in human monocytes. Thromb Res 2006; 117: 579-590.
  • 69 Müller DN, Mervaala EM, Dechend R. et al. Angiotensin II receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol 2000; 157: 111-122.
  • 70 Taubman MB, Marmur JD, Rosenfield CL. et al. Agonist-mediated tissue factor expression in cultured vascular smooth muscle cells. J Clin Invest 1993; 91: 547-552.
  • 71 Dechend R, Homuth V, Wallukat G. et al. AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 2000; 101: 2382-2387.
  • 72 Felmeden DC, Spencer CGC, Chung NAY. et al. Relation of thrombogenesis in systemic hypertension to angiogenesis and endothelial damage/dysfunction. Am J Cardiol 2003; 92: 400-405.
  • 73 Soejima H, Ogawa H, Yasue H. et al. Angiotensinconverting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol 1999; 34: 983-988.
  • 74 Koh KK, Chung W-J, Ahn JY. et al. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients. Atherosclerosis 2004; 177: 155-160.
  • 75 Schwartz GG, Olsson AG, Ezekowitz MD. et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes. JAMA 2001; 285: 1711-1718.
  • 76 Colivicchi F, Guido V, Tubaro M. et al. Effects of atorvastatin 80 mg daily early after onset of unstable angina pectoris or non-Q-wave myocardial infarction. Am J Cardiol 2002; 90: 872-874.
  • 77 Cannon CP, Braunwald E, McCabe CH. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495-1504.
  • 78 Fonarow GC, Wright RS, Spencer F a. et al. Effect of statin use within the first 24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am J Cardiol 2005; 96: 611-616.
  • 79 Monetti M, Canavesi M, Camera M. et al. Rosuvastatin displays anti-atherothrombotic and anti-inflammatory properties in apoE-deficient mice. Pharmacol Res 2007; 55: 441-449.
  • 80 Tuomisto TT, Lumivuori H, Kansanen E. et al. Simvastatin has an anti-inflammatory effect on macrophages via up-regulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc Res 2008; 78: 175-184.
  • 81 Eto M, Kozai T, Cosentino F. et al. Statin prevents tissue factor expression in human endothelial cells. Circulation 2002; 105: 1756-1759.
  • 82 Bea F, Blessing E, Shelley MI. et al. Simvastatin inhibits expression of tissue factor in advanced atherosclerotic lesions of apolipoprotein E deficient mice independently of lipid lowering. Atherosclerosis 2003; 167: 187-194.
  • 83 Aikawa M, Rabkin E, Sugiyama S. et al. An HMGCoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 2001; 103: 276-283.
  • 84 Glynn RJ, Danielson E, Fonseca FAH. et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N Engl J Med 2009; 360: 1851-1861.
  • 85 Yusuf S, Pepine CJ, Garces C. et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992; 340: 1173-1178.
  • 86 GISSI-3 Investigators. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994; 343: 1115-1122.
  • 87 The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293-302.
  • 88 Pfeffer MA, Braunwald E, Moyé LA. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992; 327: 669-677.
  • 89 Schindler R, Dinarello CA, Koch KM. Angiotensin-converting-enzyme inhibitors suppress synthesis of tumour necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine 1995; 07: 526-533.
  • 90 Kaikita K, Ogawa H, Yasue H. et al. Tissue factor expression on macrophages in coronary plaques in patients with unstable angina. Arterioscler Thromb Vasc Biol 1997; 17: 2232-2237.
  • 91 Leatham EW, Bath PM, Tooze JA. et al. Increased monocyte tissue factor expression in coronary disease. Br Heart J 1995; 73: 10-13.
  • 92 Vuk-Pavloviæ Z, Kreofsky TJ, Rohrbach MS. Characteristics of monocyte angiotensin-converting enzyme induction by dexamethasone. J Leukoc Biol 1989; 45: 503-509.
  • 93 Diet F, Pratt RE, Berry GJ. et al. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94: 2756-2767.
  • 94 Soejima H, Ogawa H, Yasue H. et al. Effects of enalapril on tissue factor in patients with uncomplicated acute myocardial infarction. Am J Cardiol 1996; 78: 336-340.
  • 95 Napoleone E, Di Santo A, Camera M. et al. Angiotensin-converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res 2000; 86: 139-143.
  • 96 Norris RM, Barnaby PF, Brown MA. et al. Prevention of ventricular fibrillation during acute myocardial infarction by intravenous propranolol. Lancet 1984; 02: 883-886.
  • 97 Yusuf S, Sleight P, Rossi P. et al. Reduction in infarct size, arrhythmias and chest pain by early intravenous beta blockade in suspected acute myocardial infarction. Circulation 1983; 67: I32-I41.
  • 98 Richterova A, Herlitz J, Holmberg S. et al. Göteborg Metoprolol Trial: effects on chest pain. Am J Cardiol 1984; 53: 32D-36D.
  • 99 Mizuochi Y, Okajima K, Harada N. et al. Carvedilol, a nonselective beta-blocker, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. Transl Res 2007; 149: 223-230.
  • 100 Yu J, Zhao J, Liu W. et al. Combined effects of irbesartan and carvedilol on expression of tissue factor and tissue factor pathway inhibitor in rats after myocardial infarction. Heart Vessels 2011; 26: 646-653.
  • 101 Mackman N, Luther T. Platelet tissue factor: to be or not to be. Thromb Res 2013; 132: 3-5.
  • 102 Østerud B, Olsen JO. Human platelets do not express tissue factor. Thromb Res 2013; 132: 112-115.
  • 103 Osterud B. Platelet activating factor enhancement of lipopolysaccharide-induced tissue factor activity in monocytes. J Leukoc Biol 1992; 51: 462-465.
  • 104 Osterud B, Olsen JO, Wilsgard L. Mechanisms of endotoxin stimulation of monocytes in whole blood. Adv Exp Med Biol 1990; 256: 389-398.
  • 105 Osnes LT, Foss KB, Joø GB. et al. Acetylsalicylic acid and sodium salicylate inhibit LPS-induced NF-kappa B/c-Rel nuclear translocation, and synthesis of tissue factor and tumor necrosis factor alfa in human monocytes. Thromb Haemost 1996; 76: 970-976.
  • 106 Oeth P, Mackman N. Salicylates inhibit lipopolysaccharide-induced transcriptional activation of the tissue factor gene in human monocytic cells. Blood 1995; 86: 4144-4152.
  • 107 Savi P, Bernat A, Dumas A. et al. Effect of aspirin and clopidogrel on platelet-dependent tissue factor expression in endothelial cells. Thromb Res 1994; 73: 117-124.
  • 108 Rao AK, Vaidyula VR, Bagga S. et al. Effect of antiplatelet agents clopidogrel, aspirin, and cilostazol on circulating tissue factor procoagulant activity in patients with peripheral arterial disease. Thromb Haemost 2006; 96: 738-743.
  • 109 Steiner S, Seidinger D, Huber K. et al. Effect of glycoprotein IIb/IIIa antagonist abciximab on monocyte-platelet aggregates and tissue factor expression. Arterioscler Thromb Vasc Biol 2003; 23: 1697-1702.
  • 110 Kopp CW, Steiner S, Nasel C. et al. Abciximab reduces monocyte tissue factor in carotid angioplasty and stenting. Stroke 2003; 34: 2560-2567.
  • 111 O’Gara PT, Kushner FG, Ascheim DD. et al. 2013 ACCF/AHA guideline for the management of STelevation myocardial infarction. J Am Coll Cardiol 2013; 61: e78-e140.
  • 112 Keeley EC, Boura Ja, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction. Lancet 2003; 361: 13-20.
  • 113 Xu P, Qi X, Li C. et al. Plasma tissue factor and tissue factor pathway inhibitor levels in acute myocardial infarction patients with no-reflow during percutaneous coronary intervention. Zhonghua Xin Xue Guan Bing Za Zhi 2008; 36: 1013-1015.
  • 114 Tutar E, Ozcan M, Kilickap M. et al. Elevated whole-blood tissue factor procoagulant activity as a marker of restenosis after percutaneous transluminal coronary angioplasty and stent implantation. Circulation 2003; 108: 1581-1584.
  • 115 Snyder LA, Rudnick KA, Tawadros R. et al. Expression of human tissue factor under the control of the mouse tissue factor promoter mediates normal hemostasis in knock-in mice. J Thromb Haemost 2008; 06: 306-314.
  • 116 Ruf W, Edgington TS. An anti-tissue factor monoclonal antibody which inhibits TF.VIIa complex is a potent anticoagulant in plasma. Thromb Haemost 1991; 66: 529-533.
  • 117 Huang M, Syed R, Stura EA. et al. The mechanism of an inhibitory antibody on TF-initiated blood coagulation revealed by the crystal structures of human tissue factor, Fab 5G9 and TF.G9 complex. J Mol Biol 1998; 275: 873-894.
  • 118 Levi M, ten Cate H, Bauer KA. et al. Inhibition of endotoxin-induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti-tissue factor antibody in chimpanzees. J Clin Invest 1994; 93: 114-120.
  • 119 Kirchhofer D, Moran P, Chiang N. et al. Epitope location on tissue factor determines the anticoagulant potency of monoclonal anti-tissue factor antibodies. Thromb Haemost 2000; 84: 1072-1081.
  • 120 Faelber K, Kirchhofer D, Presta L. et al. The 1.85 A resolution crystal structures of tissue factor in complex with humanized Fab D3h44 and of free humanized Fab D3h44. J Mol Biol 2001; 313: 83-97.
  • 121 Presta L, Sims P, Meng YG. et al. Generation of a humanized, high affinity anti-tissue factor antibody for use as a novel antithrombotic therapeutic. Thromb Haemost 2001; 85: 379-389.
  • 122 Eigenbrot C, Meng YG, Krishnamurthy R. et al. Structural insight into how an anti-idiotypic antibody against D3H44 restores normal coagulation. J Mol Biol 2003; 331: 433-446.
  • 123 Morrow DA, Murphy SA, McCabe CH. et al. Potent inhibition of thrombin with a monoclonal antibody against tissue factor. Eur Heart J 2005; 26: 682-688.
  • 124 Palmerini T, Coller BS, Cervi V. et al. Monocytederived tissue factor contributes to stent thrombosis in an in vitro system. J Am Coll Cardiol 2004; 44: 1570-1577.
  • 125 Jiao J, Kelly AB, Marzec UM. et al. Inhibition of acute vascular thrombosis in chimpanzees by an anti-human tissue factor antibody targeting the factor X binding site. Thromb Haemost 2010; 103: 224-233.
  • 126 Morris PE, Steingrub JS, Huang BY. et al. A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome. BMC Pulm Med 2012; 12: 5.
  • 127 Cappello M, Vlasuk GP, Bergum PW. et al. Ancylostoma caninum anticoagulant peptide. Proc Natl Acad Sci USA 1995; 92: 6152-6156.
  • 128 Bergum PW, Cruikshank A, Maki SL. et al. Role of zymogen and activated factor X as scaffolds for the inhibition of the blood coagulation factor VIIa-tissue factor complex by recombinant nematode anticoagulant protein c2. J Biol Chem 2001; 276: 10063-10071.
  • 129 Vlasuk GP, Bradbury A, Lopez-Kinninger L. et al. Pharmacokinetics and anticoagulant properties of the factor VIIa-tissue factor inhibitor recombinant Nematode Anticoagulant Protein c2 following subcutaneous administration in man. Thromb Haemost 2003; 90: 803-812.
  • 130 Lee A, Agnelli G, Büller H. et al. Dose-response study of recombinant factor VIIa/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation 2001; 104: 74-78.
  • 131 Moons AHM, Peters RJG, Bijsterveld NR. et al. Recombinant nematode anticoagulant protein c2, an inhibitor of the tissue factor/factor VIIa complex, in patients undergoing elective coronary angioplasty. J Am Coll Cardiol 2003; 41: 2147-2153.
  • 132 Giugliano RP, Wiviott SD, Stone PH. et al. Recombinant nematode anticoagulant protein c2 in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2007; 49: 2398-2407.
  • 133 Lincoff AM. First clinical investigation of a tissuefactor inhibitor administered during percutaneous coronary revascularization. J Am Coll Cardiol 2000; 36: 312.
  • 134 Vincent J-L, Artigas A, Petersen LC. et al. A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated recombinant factor VIIa in subjects with acute lung injury or acute respiratory distress syndrome. Crit Care Med 2009; 37: 1874-1880.
  • 135 Creasey AA. New potential therapeutic modalities: Tissue factor pathway inhibitor. Sepsis 1999; 03: 173-182.
  • 136 Abraham E, Reinhart K, Svoboda P. et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis. Crit Care Med 2001; 29: 2081-2089.
  • 137 Abraham E, Reinhart K, Opal S. et al. Efficacy and safety of tifacogin in severe sepsis. JAMA 2003; 290: 238-247.
  • 138 Wunderink RG, Laterre P-F, Francois B. et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia. Am J Respir Crit Care Med 2011; 183: 1561-1568.
  • 139 Golino P, Ragni M, Cirillo P. et al. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nat Med 1996; 02: 35-40.
  • 140 Erlich JH, Boyle EM, Labriola J. et al. Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. Am J Pathol 2000; 157: 1849-1862.
  • 141 Golino P, Ragni M, Cirillo P. et al. Recombinant human, active site-blocked factor VIIa reduces infarct size and no-reflow phenomenon in rabbits. Am J Physiol Heart Circ Physiol 2000; 278: H1507-H1516.
  • 142 Yeh C-H, Chen T-P, Wang Y-C. et al. Potent cardioprotection from ischemia-reperfusion injury by a two-domain fusion protein comprising annexin V and Kunitz protease inhibitor. J Thromb Haemost 2013; 11: 1454-1463.
  • 143 Petzelbauer P, Zacharowski PA, Miyazaki Y. et al. The fibrin-derived peptide Bbeta15–42 protects the myocardium against ischemia-reperfusion injury. Nat Med 2005; 11: 298-304.
  • 144 Steinberg SF. The cardiovascular actions of protease-activated receptors. Mol Pharmacol 2005; 67: 2-11.
  • 145 Coughlin SR. Thrombin signalling and proteaseactivated receptors. Nature 2000; 407: 258-264.
  • 146 Riewald M, Kravchenko V V, Petrovan RJ. et al. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood 2001; 97: 3109-3116.
  • 147 Riewald M, Ruf W. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci USA 2001; 98: 7742-7747.
  • 148 Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 2000; 97: 5255-5260.
  • 149 O’Brien PJ, Prevost N, Molino M. et al. Thrombin responses in human endothelial cells. J Biol Chem 2000; 275: 13502-13509.
  • 150 Lin H, Trejo J. Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits â-arrestin-mediated endosomal signaling. J Biol Chem 2013; 288: 11203-11215.
  • 151 McEachron TA, Pawlinski R, Richards KL. et al. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis. Blood 2010; 116: 5037-5044.
  • 152 Pawlinski R, Tencati M, Hampton CR. et al. Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 2007; 116: 2298-2306.
  • 153 Strande JL, Hsu A, Su J. et al. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/ reperfusion injury in rat hearts. Basic Res Cardiol 2007; 102: 350-358.
  • 154 Di Serio C, Pellerito S, Duarte M. et al. Proteaseactivated receptor 1-selective antagonist SCH79797 inhibits cell proliferation and induces apoptosis by a protease-activated receptor 1-independent mechanism. Basic Clin Pharmacol Toxicol 2007; 101: 63-69.
  • 155 Strande JL. Letter by Strande regarding article “Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy”. Circulation 2008; 117: e495.
  • 156 Glembotski CC, Irons CE, Krown KA. et al. Myocardial alpha-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem 1993; 268: 20646-20652.
  • 157 Sabri A, Muske G, Zhang H. et al. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 2000; 86: 1054-1061.
  • 158 Antoniak S, Rojas M, Spring D. et al. Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2010; 30: 2136-2142.
  • 159 Antoniak S, Sparkenbaugh EM, Tencati M. et al. Protease activated receptor-2 contributes to heart failure. PLoS One 2013; 08: e81733.
  • 160 Poole-Wilson P a, Swedberg K, Cleland JGF. et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET). Lancet 2003; 362: 7-13.
  • 161 Pitt B, Remme W, Zannad F. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348: 1309-1321.
  • 162 Zakrzeska A, Gromotowicz-Popawska A, Szemraj J. et al. Eplerenone reduces arterial thrombosis in diabetic rats. J Renin Angiotensin Aldosterone Syst. 2014 doi: 10.1177/1470320313515037.
  • 163 De Peuter OR, Kok WEM, Torp-Pedersen C. et al. Systolic heart failure: a prothrombotic state. Semin Thromb Hemost 2009; 35: 497-504.
  • 164 Brown RD, Ambler SK, Mitchell MD. et al. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 2005; 45: 657-687.
  • 165 Chien KR, Olson EN. Converging pathways and principles in heart development and disease: CV@CSH. Cell 2002; 110: 153-162.
  • 166 Jessup M, Brozena S. Heart failure. N Engl J Med 2003; 348: 2007-2018.
  • 167 Marcucci R, Gori AM, Giannotti F. et al. Markers of hypercoagulability and inflammation predict mortality in patients with heart failure. J Thromb Haemost 2006; 04: 1017-1022.
  • 168 Dries DL, Rosenberg YD, Waclawiw MA. et al. Ejection fraction and risk of thromboembolic events in patients with systolic dysfunction and sinus rhythms. J Am Coll Cardiol 1997; 29: 1074-1080.
  • 169 Luther T, Dittert DD, Kotzsch M. et al. Functional implications of tissue factor localization to cellcell contacts in myocardium. J Pathol 2000; 192: 121-130.
  • 170 Szotowski B, Goldin-Lang P, Antoniak S. et al. Alterations in myocardial tissue factor expression and cellular localization in dilated cardiomyopathy. J Am Coll Cardiol 2005; 45: 1081-1089.
  • 171 Zabczyk M, Butenas S, Palka I. et al. Active tissue factor and activated factor XI in circulating blood of patients with systolic heart failure due to ischemic cardiomyopathy. Pol Arch Med Wewnêtrznej 2010; 120: 334-340.
  • 172 Ott I, Fischer EG, Miyagi Y. et al. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol 1998; 140: 1241-1253.
  • 173 Müller M, Albrecht S, Gölfert F. et al. Localization of tissue factor in actin-filament-rich membrane areas of epithelial cells. Exp Cell Res 1999; 248: 136-147.
  • 174 Versteeg HH, Hoedemaeker I, Diks SH. et al. Factor VIIa/tissue factor-induced signaling via activation of Src-like kinases, phosphatidylinositol 3-kinase, and Rac. J Biol Chem 2000; 275: 28750-28756.
  • 175 Shauer A, Gotsman I, Keren A. et al. Acute viral myocarditis: current concepts in diagnosis and treatment. Isr Med Assoc J 2013; 15: 180-185.
  • 176 Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood 2014; 123: 2605-2613.
  • 177 Antoniak S, Mackman N. Coagulation, proteaseactivated receptors, and viral myocarditis. J Cardiovasc Transl Res 2014; 07: 203-211.
  • 178 Tomioka N, Kishimoto C, Matsumori A. et al. Mural thrombi in mice with acute viral myocarditis. Jpn Circ J 1985; 49: 1277-1279.
  • 179 Nakamura Y, Nakamura K, Fukushima-Kusano K. et al. Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thromb Res 2003; 111: 137-142.
  • 180 Antoniak S, Owens III AP, Baunacke M. et al. PAR-1 contributes to the innate immune response during viral infection. J Clin Invest 2013; 123: 1310-1322.