Hamostaseologie 2011; 31(04): 269-274
DOI: 10.5482/ha-1158
Review
Schattauer GmbH

Therapeutic potential of intravenously administered human mesenchymal stromal cells

Therapeutisches Potenzial intravenös verabreichter humaner mesenchymaler Stromazellen
K. Kollar
1   Institute for Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, Clinics of the Goethe University Frankfurt (Main), Germany
,
E. Seifried
1   Institute for Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, Clinics of the Goethe University Frankfurt (Main), Germany
,
R. Henschler
1   Institute for Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, Clinics of the Goethe University Frankfurt (Main), Germany
› Author Affiliations
Further Information

Publication History

received: 17 May 2011

accepted: 06 June 2011

Publication Date:
27 December 2017 (online)

Summary

Mesenchymal stem cells (MSC) represent a stem and progenitor cell population that has been shown to promote tissue recovery in preclinical and clinical studies. The study of MSC migration following systemic infusion of exogenous MSC is difficult. The challenges facing these efforts are due to a number of factors, including defining culture conditions for MSC, the phenotype of cultured MSC, the differences observed between cultured MSC and freshly isolated MSC. However, even if, MSC populations consist of a mixture of stem and more committed multipotent progenitors, it remains probable that these cell populations are still useful in the clinic as discussed in this review.

Zusammenfassung

Mesenchymale Stammzellen (MSC) gehören einer Stamm- und Progenitorzellpopulation an, die unterstützend bei Gewebeerneuerungen mitwirken, was sich in präklinischen und klinischen Studien gezeigt hat. Die Untersuchung des Migrationsverhaltens von MSC nach systemischer Infusion hat sich als schwierig herausgestellt. Die Herausforderungen bei diesen Bemühungen resultieren aus einer Vielzahl von Faktoren, wie die Definition der Kulturbedingungen für MSC, den Phänotyp der MSC, Unterschieden zwischen längere Zeit in Kultur expandierten MSC und frisch isolierten MSC sowie die umstrittene Frage, ob es sich überhaupt um eine einheitliche Zellpopulation handelt oder um eine Mischung von Stamm- und multipotenten Vorläuferzellen. Dennoch zeigen sich diese Zellen in zahlreichen Studien als vielversprechend für klinische Anwendungen, die in diesem Review diskutiert werden.

 
  • References

  • 1 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-1822.
  • 2 Amrani DL, Port S. Cardiovascular disease: potential impact of stem cell therapy. Expert Rev Cardiovasc Ther 2003; 01: 453-461.
  • 3 Ashton BA, Allen TD. et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res 1980; 151: 294-307.
  • 4 Assmus B, Honold J. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355: 1222-1232.
  • 5 Baker M. Stem-cell drug fails crucial trials. Nature news. 2009
  • 6 Ball LM, Bernardo ME. et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007; 110: 2764-2767.
  • 7 Balsam LB, Wagers AJ. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004; 428: 668-673.
  • 8 Bartholomew A, Sturgeon C. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42-48.
  • 9 Baxter MA, Wynn RF. et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22: 675-682.
  • 10 Becker AJ, Mc CE. et al. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197: 452-454.
  • 11 Belema-Bedada F, Uchida S. et al. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2008; 02: 566-575.
  • 12 Beltrami AP, Barlucchi L. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763-776.
  • 13 Bensidhoum M, Chapel A. et al. Homing of in vitro expanded Stro-1− or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004; 103: 3313-3319.
  • 14 Benvenuto F, Ferrari S. et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 2007; 25: 1753-1760.
  • 15 Berry MF, Engler AJ. et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006; 290: H2196-2203.
  • 16 Bianco P, Riminucci M. et al. Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit Rev Eukaryot Gene Expr 1999; 09: 159-173.
  • 17 Bianco P, Robey PG. et al. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 02: 313-319.
  • 18 Burchfield JS, Dimmeler S. Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 2008; 01: 4.
  • 19 Bussolati B, Tetta C. et al. Contribution of stem cells to kidney repair. Am J Nephrol 2008; 28: 813-822.
  • 20 Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 09: 641-650.
  • 21 Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076-1084.
  • 22 Caplice NM, Gersh BJ. et al. Cell therapy for cardiovascular disease: what cells, what diseases and for whom?. Nat Clin Pract Cardiovasc Med 2005; 02: 37-43.
  • 23 Chien KR, Domian IJ. et al. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 2008; 322: 1494-1497.
  • 24 Corcione A, Benvenuto F. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367-372.
  • 25 Deeg HJ, Blazar BR. et al. Treatment of steroid-refractory acute graft-versus-host disease with anti- CD147 monoclonal antibody ABX-CBL. Blood 2001; 98: 2052-2058.
  • 26 Dexter TM, Allen TD. et al. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335-344.
  • 27 Di Nicola M, Carlo-Stella C. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-3843.
  • 28 Dzau VJ, Gnecchi M. et al. Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 2005; 46: 1351-1353.
  • 29 Eliopoulos N, Stagg J. et al. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 2005; 106: 4057-4065.
  • 30 Friedenstein A, Petrakova K. et al. Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 06: 230-247.
  • 31 Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976; 47: 327-359.
  • 32 Friedenstein AJ, Chailakhjan RK. et al. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 03: 393-403.
  • 33 Friedenstein AJ, Chailakhyan RK. et al. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987; 20: 263-272.
  • 34 Friedenstein AJ, Deriglasova UF. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 02: 83-92.
  • 35 Fuchs E, Segre JA. Stem cells: a new lease on life. Cell 2000; 100: 143-155.
  • 36 Gahrton G, Bjorkstrand B. Progress in haematopoietic stem cell transplantation for multiple myeloma. J Intern Med 2000; 248: 185-201.
  • 37 Garcia S, Bernad A. et al. Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 2010; 316: 1648-1650.
  • 38 Glennie S, Soeiro I. et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105: 2821-2827.
  • 39 Gnecchi M, He H. et al. Paracrine action accounts for marked protection of ischemic heart by Aktmodified mesenchymal stem cells. Nat Med 2005; 11: 367-368.
  • 40 Gnecchi M, Zhang Z. et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204-1219.
  • 41 Goldman SA, Windrem MS. Cell replacement therapy in neurological disease. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1463-1475.
  • 42 Hiwase SD, Dyson PG. et al. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells 2009; 27: 2293-300.
  • 43 Horwitz EM, Gordon PL. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99: 8932-8937.
  • 44 Horwitz EM, Le Blanc K. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 07: 393-395.
  • 45 Horwitz EM, Prockop DJ. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 05: 309-313.
  • 46 in 't Anker PS, Noort WA. et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881-889.
  • 47 Kebriaei P, Isola L. et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant 2009; 15: 804-811.
  • 48 Kern S, Eichler H. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-1301.
  • 49 Kinnaird T, Stabile E. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678-685.
  • 50 Klyushnenkova E, Mosca JD. et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12: 47-57.
  • 51 Koc ON, Gerson SL. et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307-316.
  • 52 Kopen GC, Prockop DJ. et al. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999; 96: 10711-10716.
  • 53 Krampera M, Glennie S. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722-3729.
  • 54 Lazarus HM, Haynesworth SE. et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995; 16: 557-564.
  • 55 Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 05: 485-489.
  • 56 Le Blanc K, Frassoni F. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579-1586.
  • 57 Le Blanc K, Rasmusson I. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-1441.
  • 58 Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262: 509-525.
  • 59 Le Blanc K, Samuelsson H. et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007; 21: 1733-1738.
  • 60 Le Blanc K, Tammik L. et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11-20.
  • 61 Liechty KW, MacKenzie TC. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 06: 1282-1286.
  • 62 Lindvall O. Stem cells for cell therapy in Parkinson’s disease. Pharmacol Res 2003; 47: 279-287.
  • 63 Makino S, Fukuda K. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103: 697-705.
  • 64 Meisel R, Zibert A. et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619-4621.
  • 65 Meuleman N, Tondreau T. et al. Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev 2009; 18: 1247-1252.
  • 66 Meyer GP, Wollert KC. et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006; 113: 1287-1294.
  • 67 Minguell JJ, Erices A. et al. Mesenchymal stem cells. Exp Biol Med (Maywood) 2001; 226: 507-520.
  • 68 Murry CE, Soonpaa MH. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664-668.
  • 69 Nakao N, Nakayama T. et al. Adipose Tissue-Derived Mesenchymal Stem Cells Facilitate Hematopoiesis In Vitro and In Vivo. Advantages Over Bone Marrow-Derived Mesenchymal Stem Cells. Am J Pathol 2010; 177: 547-554.
  • 70 Nauta AJ, Westerhuis G. et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108: 2114-2120.
  • 71 Ning H, Yang F. et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 2008; 22: 593-599.
  • 72 Noiseux N, Gnecchi M. et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006; 14: 840-850.
  • 73 Noort WA, Kruisselbrink AB. et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/ SCID mice. Exp Hematol 2002; 30: 870-878.
  • 74 Nuttall ME, Patton AJ. et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 1998; 13: 371-382.
  • 75 Nygren JM, Jovinge S. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494-501.
  • 76 Orlic D, Kajstura J. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001; 98: 10344-10349.
  • 77 Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60.
  • 78 Perin EC, Dohmann HF. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302.
  • 79 Pittenger MF, Mackay AM. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147.
  • 80 Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20.
  • 81 Plumas J, Chaperot L. et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19: 1597-1604.
  • 82 Pochampally RR, Neville BT. et al. Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci U S A 2004; 101: 9282-9285.
  • 83 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71-74.
  • 84 Psaltis PJ, Zannettino AC. et al. Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 2008; 26: 2201-2210.
  • 85 Quevedo HC, Hatzistergos KE. et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 2009; 106: 14022-14027.
  • 86 Ramasamy R, Lam EW. et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 2007; 21: 304-310.
  • 87 Reinecke H, Minami E. et al. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 2008; 103: 1058-1071.
  • 88 Ringden O, Nilsson B. Death by graft-versus-host disease associated with HLA mismatch, high recipient age, low marrow cell dose, and splenectomy. Transplantation 1985; 40: 39-44.
  • 89 Rosland GV, Svendsen A. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 2009; 69: 5331-5339.
  • 90 Rubio D, Garcia-Castro J. et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039.
  • 91 Sensebe L. Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 2008; 18: S3-10.
  • 92 Sensebe L, Bourin P. Mesenchymal stem cells for therapeutic purposes. Transplantation 2009; 87: S49-53.
  • 93 Serakinci N, Guldberg P. et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004; 23: 5095-5098.
  • 94 Siminovitch L, McCulloch EA. et al. The Distribution of Colony-Forming Cells among Spleen Colonies. J Cell Physiol 1963; 62: 327-336.
  • 95 Simmons PJ, Przepiorka D. et al. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 1987; 328: 429-432.
  • 96 Stagg J, Pommey S. et al. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107: 2570-2577.
  • 97 Stolzing A, Jones E. et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 2008; 129: 163-173.
  • 98 Storb R, Thomas ED. Graft-versus-host disease in dog and man: the Seattle experience. Immunol Rev 1985; 88: 215-238.
  • 99 Tang YL, Zhu W. et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009; 104: 1209-1216.
  • 100 Tarte K, Gaillard J. et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 1985; 115: 1549-1553.
  • 101 Terada N, Hamazaki T. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542-545.
  • 102 Tomita S, Mickle DA. et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002; 123: 1132-1140.
  • 103 Torsvik A, Rosland GV. et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res 2010; 70: 6393-6396.
  • 104 Tse WT, Pendleton JD. et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75: 389-397.
  • 105 Uemura R, Xu M. et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 2006; 98: 1414-1421.
  • 106 Wakitani S, Saito T. et al. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995; 18: 1417-1426.