Hamostaseologie 2012; 32(02): 95-104
DOI: 10.5482/ha-1160
Review
Schattauer GmbH

Crosstalk between cancer and haemostasis

Implications for cancer biology and cancer-associated thrombosis with focus on tissue factorZusammenspiel von Tumorwachstum und HämostaseaktivierungBedeutung von Tissue- Faktor für Tumorbiologie und tumorassoziierte Thrombose
F. Langer
1   Hubertus Wald Tumorzentrum – Universitäres Cancer Center Hamburg, Universitätsklinikum Hamburg-Eppendorf
,
C. Bokemeyer
1   Hubertus Wald Tumorzentrum – Universitäres Cancer Center Hamburg, Universitätsklinikum Hamburg-Eppendorf
› Author Affiliations
Further Information

Publication History

received: 30 May 2011

accepted: 20 June 2011

Publication Date:
28 December 2017 (online)

Summary

Cancer is characterized by bidirectional interrelations between tumour progression, coagulation activation, and inflammation. Tissue factor (TF), the principal initiator of the coagulation protease cascade, is centrally positioned in this complex triangular network due to its pleiotropic effects in haemostasis, angiogenesis, and haematogenous metastasis. While formation of macroscopic thrombi is the correlate of cancer-associated venous thromboembolism (VTE), a major healthcare burden in clinical haematology and oncology, microvascular thrombosis appears to be critically important to blood-borne tumour cell dissemination. In this regard, expression of TF in malignant tissues as well as shedding of TFbearing microparticles into the circulation are thought to be regulated by defined genetic events relevant to pathological cancer progression, thus directly linking Trousseau’s syndrome to molecular tumourigenesis.

Because pharmacological inhibition of the TF pathway in selective tumour types and patient subgroups would be in line with the modern concept of individualized, targeted anti-cancer therapy, this review will focus on the role of TF in tumour biology and cancer-associated VTE.

Zusammenfassung

Krebserkrankungen sind durch wechselseitige Beziehungen zwischen Tumorprogression, Hämostaseaktivierung und Entzündungsreaktion gekennzeichnet. Tissue-Faktor (TF), der wichtigste Initiator der Gerinnungskaskade, nimmt eine zentrale Position in diesem Netzwerk ein, da er vielseitige Funktionen in der Hämostase, Angiogenese und hämatogenen Metastasierung ausübt. Während der tumorassoziierten venösen Thromboembolie (VTE) die Ausbildung makroskopischer Thromben zugrunde liegt, scheint die mikrovaskuläre Thrombose für die hämatogene Tumorzellaussaat von Bedeutung zu sein. Vor diesem Hintergrund wird angenommen, dass sowohl die TF-Expression in malignen Geweben als auch die Freisetzung von TF-positiven Mikro- partikeln in das Blut durch definierte, für die Tumorentstehung relevante Mutationen reguliert werden. Hierdurch wird das Trousseau- Syndrom direkt mit der Krankheitsprogression in Verbindung gebracht.

Da eine pharmakologische TF-Hemmung in selektierten Patientensubgruppen dem modernen Konzept einer individualisierten, zielgerichteten Krebstherapie gerecht würde, befasst sich diese Arbeit mit der Rolle von TF in der Tumorbiologie und der tumorassoziierten VTE.

 
  • References

  • 1 Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 2006; 32 (Suppl. 01) 61-68.
  • 2 Nash GF, Walsh DC, Kakkar AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2001; 02: 608-613.
  • 3 Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol 2002; 03: 425-430.
  • 4 De Cicco M. The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 2004; 50: 187-196.
  • 5 Franchini M, Montagnana M, Targher G. et al. Pathogenesis, clinical and laboratory aspects of thrombosis in cancer. J Thromb Thrombolysis 2007; 24: 29-38.
  • 6 Seitz R, Rappe N, Kraus M. et al. Activation of coagulation and fibrinolysis in patients with lung cancer: relation to tumour stage and prognosis. Blood Coagul Fibrinolysis 1993; 04: 249-254.
  • 7 Oya M, Akiyama Y, Okuyama T, Ishikawa H. High preoperative plasma D-dimer level is associated with advanced tumor stage and short survival after curative resection in patients with colorectal cancer. Jpn J Clin Oncol 2001; 31: 388-394.
  • 8 Dirix LY, Salgado R, Weytjens R. et al. Plasma fibrin D-dimer levels correlate with tumor volume, progression rate and survival in patients with metastatic breast cancer. Br J Cancer 2002; 86: 389-395.
  • 9 Buccheri G, Torchio P, Ferrigno D. Plasma levels of D-dimer in lung carcinoma: clinical and prognostic significance. Cancer 2003; 97: 3044-3052.
  • 10 Szaba FM, Smiley ST. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 2002; 99: 1053-1059.
  • 11 Hjortoe GM, Petersen LC, Albrektsen T. et al. Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 2004; 103: 3029-3037.
  • 12 Pawlinski R, Mackman N. Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Crit Care Med 2004; 32: S293-S297.
  • 13 Naldini A, Bernini C, Pucci A, Carraro F. Thrombinmediated IL-10 up-regulation involves protease-activated receptor (PAR)-1 expression in human mononuclear leukocytes. J Leukoc Biol 2005; 78: 736-744.
  • 14 Esmon CT. Does inflammation contribute to thrombotic events?. Haemostasis 2000; 30 (Suppl. 02) 34-40.
  • 15 Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci 2010; 67: 499-511.
  • 16 Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica 2000; 85: 967-972.
  • 17 Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des 2009; 15: 1949-1955.
  • 18 Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007; 121: 2373-2380.
  • 19 Allavena P, Garlanda C, Borrello MG. et al. Pathways connecting inflammation and cancer. Curr Opin Genet Dev 2008; 18: 3-10.
  • 20 Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007; 05 (Suppl. 01) 246-254.
  • 21 Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 2007; 110: 1723-1729.
  • 22 Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol 2002; 03: 27-34.
  • 23 Kuderer NM, Ortel TL, Francis CW. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J Clin Oncol 2009; 27: 4902-4911.
  • 24 Menapace LA, Peterson DR, Berry A. et al. Symptomatic and incidental thromboses are both associated with mortality in pancreatic cancer. Blood 2010; 116: 3167.
  • 25 Lee AY. Anticoagulation in the treatment of established venous thromboembolism in patients with cancer. J Clin Oncol 2009; 27: 4895-4901.
  • 26 Falanga A. Biological and clinical aspects of anticancer effects of antithrombotics. Pathophysiol Haemost Thromb 2003/2004; 33: 389-392.
  • 27 Palumbo JS. Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. Semin Thromb Hemost 2008; 34: 154-160.
  • 28 Chinen K, Kazumoto T, Ohkura Y. et al. Pulmonary tumor thrombotic microangiopathy caused by a gastric carcinoma expressing vascular endothelial growth factor and tissue factor. Pathol Int 2005; 55: 27-31.
  • 29 Chinen K, Tokuda Y, Fujiwara M, Fujioka Y. Pulmonary tumor thrombotic microangiopathy in patients with gastric carcinoma: an analysis of 6 autopsy cases and review of the literature. Pathol Res Pract 2010; 206: 682-689.
  • 30 Okubo Y, Wakayama M, Kitahara K. et al. Pulmonary tumor thrombotic microangiopathy induced by gastric carcinoma: morphometric and immunohistochemical analysis of six autopsy cases. Diagn Pathol 2011; 06: 27.
  • 31 Chinen K, Fujino T, Horita A. et al. Pulmonary tumor thrombotic microangiopathy caused by an ovarian cancer expressing tissue factor and vascular endothelial growth factor. Pathol Res Pract 2009; 205: 63-68.
  • 32 Garnier D, Milsom C, Magnus N. et al. Role of the tissue factor pathway in the biology of tumor initiating cells. Thromb Res 2010; 125 (Suppl. 02) S44-S50.
  • 33 Kakkar AK, Lemoine NR, Scully MF. et al. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg 1995; 82: 1101-1104.
  • 34 Shigemori C, Wada H, Matsumoto K. et al. Tissue factor expression and metastatic potential of colorectal cancer. Thromb Haemost 1998; 80: 894-898.
  • 35 Koomagi R, Volm M. Tissue-factor expression in human non-small-cell lung carcinoma measured by immunohistochemistry: correlation between tissue factor and angiogenesis. Int J Cancer 1998; 79: 19-22.
  • 36 Abdulkadir SA, Carvalhal GF, Kaleem Z. et al. Tissue factor expression and angiogenesis in human prostate carcinoma. Hum Pathol 2000; 31: 443-447.
  • 37 Ohta S, Wada H, Nakazaki T. et al. Expression of tissue factor is associated with clinical features and angiogenesis in prostate cancer. Anticancer Res 2002; 22: 2991-2996.
  • 38 Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66: 10643-10646.
  • 39 Yu JL, May L, Lhotak V. et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105: 1734-1741.
  • 40 Milsom CC, Yu JL, Mackman N. et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68: 10068-10076.
  • 41 Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116: 815-818.
  • 42 Rong Y, Belozerov VE, Tucker-Burden C. et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 2009; 69: 2540-2549.
  • 43 Rong Y, Post DE, Pieper RO. et al. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65: 1406-1413.
  • 44 Yan J, Wang K, Dong L. et al. PML/RARalpha fusion protein transactivates the tissue factor promoter through a GAGC-containing element without direct DNA association. Proc Natl Acad Sci USA 2010; 107: 3716-3721.
  • 45 Rong Y, Durden DL, Van Meir EG, Brat DJ. ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 2006; 65: 529-539.
  • 46 Regina S, Valentin JB, Lachot S. et al. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 2009; 55: 1834-1842.
  • 47 Yu J, May L, Milsom C. et al. Contribution of host-derived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 2008; 28: 1975-1981.
  • 48 Hobbs JE, Zakarija A, Cundiff DL. et al. Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 2007; 120 (Suppl. 02) S13-S21.
  • 49 Signaevsky M, Hobbs J, Doll J. et al. Role of alternatively spliced tissue factor in pancreatic cancer growth and angiogenesis. Semin Thromb Hemost 2008; 34: 161-169.
  • 50 Palumbo JS, Kombrinck KW, Drew AF. et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000; 96: 3302-3309.
  • 51 Schaffner F, Ruf W. Tissue factor and protease-activated receptor signaling in cancer. Semin Thromb Hemost 2008; 34: 147-153.
  • 52 Rydén L, Grabau D, Schaffner F. et al. Evidence for tissue factor phosphorylation and its correlation with protease-activated receptor expression and the prognosis of primary breast cancer. Int J Cancer 2010; 126: 2330-2340.
  • 53 Abe K, Shoji M, Chen J. et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 1999; 96: 8663-8668.
  • 54 Dorfleutner A, Hintermann E, Tarui T. er al. Crosstalk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell 2004; 15: 4416-4425.
  • 55 Ott I, Fischer EG, Miyagi Y. et al. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol 1998; 140: 1241-1253.
  • 56 van den Berg YW, van den Hengel LG, Myers HR. et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci USA 2009; 106: 19497-19502.
  • 57 Ahamed J, Versteeg HH, Kerver M. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937.
  • 58 Versteeg HH, Schaffner F, Kerver M. et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111: 190-199.
  • 59 Uno K, Homma S, Satoh T. et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 2007; 96: 290-295.
  • 60 Khorana AA, Ahrendt SA, Ryan CK. et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13: 2870-2875.
  • 61 de Meis E, Azambuja D, Ayres-Silva JP. et al. Increased expression of tissue factor and protease-activated receptor-1 does not correlate with thrombosis in human lung adenocarcinoma. Braz J Med Biol Res 2010; 43: 403-408.
  • 62 Del Conde I, Bharwani LD, Dietzen DJ. et al. Microvesicle-associated tissue factor and Trousseau’s syndrome. J Thromb Haemost 2007; 05: 70-74.
  • 63 Tesselaar ME, Romijn FP, Van Der Linden IK. et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?. J Thromb Haemost 2007; 05: 520-527.
  • 64 Tesselaar ME, Romijn FP, van der Linden IK. et al. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J Thromb Haemost 2009; 07: 1421-1423.
  • 65 Manly DA, Wang J, Glover SL. et al. Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 2010; 125: 511-512.
  • 66 Campello E, Spiezia L, Radu CM. et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res 2011; 127: 473-477.
  • 67 Khorana AA, Francis CW, Menzies KE. et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 2008; 06: 1983-1985.
  • 68 Zwicker JI, Liebman HA, Neuberg D. et al. Tumorderived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 2009; 15: 6830-6840.
  • 69 Langer F, Spath B, Haubold K. et al. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated intravascular coagulation. Ann Hematol 2008; 87: 451-457.
  • 70 Østerud B. Tissue factor expression in blood cells. Thromb Res 2010; 125 (Suppl. 01) S31-S34.
  • 71 Owens 3rd AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108: 1284-1297.
  • 72 Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 02: 2065-2067.
  • 73 Hron G, Kollars M, Weber H. et al. Tissue factorpositive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 2007; 97: 119-123.
  • 74 Haubold K, Rink M, Spath B. et al. Tissue factor procoagulant activity of plasma microparticles is increased in patients with early-stage prostate cancer. Thromb Haemost 2009; 101: 1147-1155.
  • 75 Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Hemost 2010; 36: 865-875.
  • 76 Davila M, Amirkhosravi A, Coll E. et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 2008; 06: 1517-1524.
  • 77 Thomas GM, Panicot-Dubois L, Lacroix R. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206: 1913-1927.
  • 78 Nieuwland R. Cellular origin of microparticles exposing tissue factor in cancer: a mixed double?. J Thromb Haemost 2008; 06: 1514-1516.
  • 79 Ueno T, Toi M, Koike M. et al. Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration. Br J Cancer 2000; 83: 164-70.
  • 80 Han LY, Landen Jr CN, Kamat AA. et al. Preoperative serum tissue factor levels are an independent prognostic factor in patients with ovarian carcinoma. J Clin Oncol 2006; 24: 755-761.
  • 81 Langer F, Chun FK, Amirkhosravi A. et al. Plasma tissue factor antigen in localized prostate cancer: distribution, clinical significance and correlation with haemostatic activation markers. Thromb Haemost 2007; 97: 464-470.
  • 82 Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36: 888-906.
  • 83 Mueller BM, Reisfeld RA, Edgington TS, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 1992; 89: 11832-11836.
  • 84 Im JH, Fu W, Wang H. et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 2004; 64: 8613-8619.
  • 85 Palumbo JS, Talmage KE, Massari JV. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105: 178-185.
  • 86 Amirkhosravi A, Mousa SA, Amaya M. et al. Assessment of anti-metastatic effects of anticoagulant and antiplatelet agents using animal models of experimental lung metastasis. Methods Mol Biol 2010; 663: 241-259.
  • 87 Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant lowmolecular-weight heparin versus the standard lowmolecular-weight heparin, enoxaparin. Thromb Haemost 2006; 96: 816-821.
  • 88 Ludwig RJ, Alban S, Bistrian R. et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb Haemost 2006; 95: 535-540.
  • 89 Langer F, Amirkhosravi A, Ingersoll SB. et al. Experimental metastasis and primary tumor growth in mice with hemophilia A. J Thromb Haemost 2006; 04: 1056-1062.
  • 90 Falati S, Liu Q, Gross P. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003; 197: 1585-1598.
  • 91 Brüggemann LW, Versteeg HH, Niers TM. et al. Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders. J Cell Mol Med 2008; 12: 2622-2627.
  • 92 Amirkhosravi A, Meyer T, Chang JY. et al. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb Haemost 2002; 87: 930-936.
  • 93 Zhao J, Aguilar G, Palencia S. et al. rNAPc2 inhibits colorectal cancer in mice through tissue factor. Clin Cancer Res 2009; 15: 208-216.
  • 94 Carneiro-Lobo TC, Konig S, Machado DE. et al. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J Thromb Haemost 2009; 07: 1855-1864.
  • 95 Amarzguioui M, Peng Q, Wiiger MT. et al. Ex vivo and in vivo delivery of anti-tissue factor short interfering RNA inhibits mouse pulmonary metastasis of B16 melanoma cells. Clin Cancer Res 2006; 12: 4055-4061.
  • 96 Ndungu JM, Lu YJ, Zhu S. et al. Targeted delivery of paclitaxel to tumor cells: synthesis and in vitro evaluation. J Med Chem 2010; 53: 3127-3132.
  • 97 Duanmu J, Cheng J, Xu J, Booth CJ, Hu Z. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy. Br J Cancer 2011; 104: 1401-1409.
  • 98 Cocco E, Hu Z, Richter CE. et al. hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor for immunotherapy of uterine serous papillary carcinoma. Br J Cancer 2010; 103: 812-819.
  • 99 Schwöppe C, Kessler T, Persigehl T. et al. Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb Res 2010; 125 (Suppl. 02) S143-S150.
  • 100 Morrow DA, Murphy SA, McCabe CH. etr al. Potent inhibition of thrombin with a monoclonal antibody against tissue factor (Sunol-cH36): results of the PROXIMATE-TIMI 27 trial. Eur Heart J 2005; 26: 682-688.