CC BY-NC-ND 4.0 · Sleep Sci 2018; 11(02): 56-64
DOI: 10.5935/1984-0063.20180013
Theoretical Essays

Insufficient Sleep Syndrome: Is it time to classify it as a major noncommunicable disease?

Vijay Kumar Chattu
1   Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago.
,
Sateesh M. Sakhamuri
1   Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago.
,
Raman Kumar
2   President, Academy of Family Physicians of India, New Delhi, India.
,
David Warren Spence
3   Research Consultant, Dufferin Street, Toronto, ON M6K 2B4, Canada.
,
Ahmed S. BaHammam
4   University Sleep Disorders Center, College of Medicine and National Plan for Science and Technology, King Saud University, Riyadh, Saudi Arabia.
,
Seithikurippu R. Pandi-Perumal
5   Somnogen Canada Inc., College Street, Toronto, ON, M6H 1C5, Canada.
› Author Affiliations

Over the last three to four decades, it has been observed that the average total number of hours of sleep obtained per night by normal individuals have decreased. Concomitantly, global figures indicate that insufficient sleep is associated with serious adverse health and social outcomes. Moreover, insufficient sleep has been linked to seven of the fifteen leading causes of death. Additionally, current evidence suggests that sleep plays a significant role in determining cognitive performance and workplace productivity. There is a great need for a systematic analysis of the economic impact of insufficient sleep, particularly given current evidence that this phenomenon, as well as the poor sleep hygiene practices which produce it, is increasing worldwide. This paper takes the view that health authorities around the world need to raise the general awareness of benefits of sleep. There is considerable scope for research into both the public health impact as well as the macroeconomic consequences of insufficient sleep syndrome (ISS). Additionally, various models which estimate the undiagnosed burden of ISS on the GDP (gross domestic product) are needed to prioritize health issues and to highlight the national policies that are necessary to combat this medical problem. Sleep insufficiency has been declared to be a ‘public health epidemic’; therefore, we propose ISS as a potential noncommunicable disease. This review elaborates on this topic further, exploring the causes and consequences of insufficient sleep, and thus providing a perspective on the policies that are needed as well as the research that will be required to support and justify these policies.



Publication History

Received: 01 December 2017

Accepted: 07 March 2018

Article published online:
13 October 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 Paruthi S, Brooks LJ, D’Ambrosio C, Hall WA, Kotagal S, Lloyd RM, et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J Clin Sleep Med. 2016;12(6):785-6.
  • 2 Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38(6):843-4.
  • 3 National Sleep Foundation. (2013). International Bedroom Poll. As of 28 November 2016: https://sleepfoundation.org/sleep-polls-data/otherpolls/2013-international-bedroom-poll.
  • 4 Prevention CfDCa. Youth risk behavior surveillance—United States, 2009. MMWR. 2009a.
  • 5 Perceived insufficient rest or sleep among adults - United States, 2008. MMWR Morb Mortal Wkly Rep. 2009;58(42):1175-9.
  • 6 Krueger PM, Friedman EM. Sleep duration in the United States: a crosssectional population-based study. Am J Epidemiol. 2009;169(9):1052-63.
  • 7 Merdad RA, Akil H, Wali SO. Sleepiness in Adolescents. Sleep Med Clin. 2017;12(3):415-28.
  • 8 Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Basta M, et al. Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep. 2010;33(9):1159-64.
  • 9 Kochanek KD, Murphy SL, Xu J, Arias E. Mortality in the United States,
  • 2013 NCHS Data Brief. 2014;(178):1-8.
  • 10 Pack AI, Pack AM, Rodgman E, Cucchiara A, Dinges DF, Schwab CW. Characteristics of crashes attributed to the driver having fallen asleep. Accid Anal Prev. 1995;27(6):769-75.
  • 11 Nuckols TK, Bhattacharya J, Wolman DM, Ulmer C, Escarce JJ. Cost implications of reduced work hours and workloads for resident physicians. New Engl J Med. 2009;360(21):2202-15.
  • 12 Dinges DF, Graeber RC, Carskadon MA, Czeisler CA, Dement WC. Attending to Inattention. Science. 1989;342-3.
  • 13 The Three Mile Island Nuclear Accident: Lessons and Implications. Ann N Y Acad Sci. 1981;365:1-343.
  • 14 National Commission on Sleep Disorders R, United States. Dept. of H, Human S. Wake Up America: A National Sleep Alert: Report of the National Commission on Sleep Disorders Research: The Commission; 1993.
  • 15 Committee on Energy and Natural Resources. The Chernobyl Accident: Hearing Before the Committee on Energy and Natural Resources, United States Senate, Ninety-ninth Congress, Second Session on the Chernobyl Accident and Implications for the Domestic Nuclear Industry. Washington: U.S. Government Printing Office; 1986.
  • 16 Walsh JK, Dement WC, Dinges DF. Sleep medicine, public policy, and public health. In: Kryger MH, Roth T, Dement WC, eds. Principles and practice of sleep medicine. Philadelphia: Saunders; 2011.
  • 17 Diagnostic classification of sleep and arousal disorders. 1979 first edition. Association of Sleep Disorders Centers and the Association for the Psychophysiological Study of Sleep. Sleep. 19792(1):1-154.
  • 18 Roth T. An overview of the report of the national commission on sleep disorders research. Eur Psychiatry. 1995;10 Suppl 3:109s-13s.
  • 19 Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft. Prevalence of Healthy Sleep Duration Among Adults — United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(6):137-41.
  • 20 American Academy of Sleep Medicine. International Classification Of Sleep Disorders, 3rd ed. Darien: American Academy of Sleep Medicine;2014.
  • 21 Pandi-Perumal SR, Abumuamar AM, Spence DW, Chattu VK, Moscovitch A, BaHammam AS. Racial/Ethnic and Social Inequities in Sleep Medicine: The Tip of the Iceberg? J Natl Med Assoc. 2017;109(4):279-86.
  • 22 World Health Organization (WHO). ICD-11 for Mortality and Morbidity Statistics (ICD-11 MMS). WHO; 2018 [cited 2018 June 19]; Available from: https://icd.who.int/browse11/l-m/en
  • 23 World Health Organization WHO. Noncommunicable diseases. Geneva: WHO; 2017 [updated June, 2017; cited 2018 30 January]. Available from: http://www.who.int/mediacentre/factsheets/fs355/en/
  • 24 Whitney P, Hinson JM, Satterfield BC, Grant DA, Honn KA, Van Dongen HPA. Sleep Deprivation Diminishes Attentional Control Effectiveness and Impairs Flexible Adaptation to Changing Conditions. Sci Rep. 2017;7(1):16020.
  • 25 Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, et al. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol. 2007;17(7):613-8.
  • 26 Retey JV, Adam M, Gottselig JM, Khatami R, Durr R, Achermann P, et al. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. J Neurosci. 2006;26(41):10472-9.
  • 27 Satterfield BC, Wisor JP, Field SA, Schmidt MA, Van Dongen HP. TNFalpha G308A polymorphism is associated with resilience to sleep deprivation- induced psychomotor vigilance performance impairment in healthy young adults. Brain Behav Immun. 2015;47:66-74.
  • 28 Grunstein RR. Global perspectives on sleep and health issues. J Nat Inst Public Health. 2012;61(1):35-42.
  • 29 Stranges S, Tigbe W, Gomez-Olive FX, Thorogood M, Kandala NB. Sleep problems: an emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep. 2012;35(8):1173-81.
  • 30 Hayley AC, Williams LJ, Kennedy GA, Berk M, Brennan SL, Pasco JA. Prevalence of excessive daytime sleepiness in a sample of the Australian adult population. Sleep Med. 2014;15(3):348-54.
  • 31 Empana JP, Dauvilliers Y, Dartigues JF, Ritchie K, Gariepy J, Jouven X, et al. Excessive daytime sleepiness is an independent risk indicator for cardiovascular mortality in community-dwelling elderly: the three city study. Stroke. 2009;40(4):1219-24.
  • 32 Vashum KP, McEvoy MA, Hancock SJ, Islam MR, Peel R, Attia JR, et al. Prevalence of and associations with excessive daytime sleepiness in an Australian older population. Asia Pac J Pub Health. 2015;27(2):NP2275-84.
  • 33 Bixler EO, Vgontzas AN, Lin HM, Calhoun SL, Vela-Bueno A, Kales A. Excessive daytime sleepiness in a general population sample: the role of sleep apnea, age, obesity, diabetes, and depression. J Clin Endocrinol Metab. 2005;90(8):4510-5.
  • 34 Ford ES, Cunningham TJ, Giles WH, Croft JB. Trends in insomnia and excessive daytime sleepiness among U.S. adults from 2002 to 2012. Sleep Med. 2015;16(3):372-8.
  • 35 Ohayon MM, Caulet M, Philip P, Guilleminault C, Priest RG. How sleep and mental disorders are related to complaints of daytime sleepiness. Arch Intern Med. 1997;157(22):2645-52.
  • 36 Zielinski J, Zgierska A, Polakowska M, Finn L, Kurjata P, Kupsc W, et al. Snoring and excessive daytime somnolence among Polish middle-aged adults. Eur Respir J. 1999;14(4):946-50.
  • 37 Baldwin CM, Kapur VK, Holberg CJ, Rosen C, Nieto FJ. Associations between gender and measures of daytime somnolence in the Sleep Heart Health Study. Sleep. 200415;27(2):305-11.
  • 38 Kaneita Y, Ohida T, Uchiyama M, Takemura S, Kawahara K, Yokoyama E, et al. Excessive daytime sleepiness among the Japanese general population. J Epidemiol. 2005;15(1):1-8.
  • 39 Ng TP, Tan WC. Prevalence and determinants of excessive daytime sleepiness in an Asian multi-ethnic population. Sleep Med. 2005;6(6):523-9.
  • 40 Pallesen S, Nordhus IH, Omvik S, Sivertsen B, Tell GS, Bjorvatn B. Prevalence and risk factors of subjective sleepiness in the general adult population. Sleep. 2007;30(5):619-24.
  • 41 Tsuno N, Jaussent I, Dauvilliers Y, Touchon J, Ritchie K, Besset A. Determinants of excessive daytime sleepiness in a French community-dwelling elderly population. J Sleep Res. 2007;16(4):364-71.
  • 42 Bartlett DJ, Marshall NS, Williams A, Grunstein RR. Sleep health New South Wales: chronic sleep restriction and daytime sleepiness. Intern Med J. 2008;38(1):24-31.
  • 43 Joo S, Baik I, Yi H, Jung K, Kim J, Shin C. Prevalence of excessive daytime sleepiness and associated factors in the adult population of Korea. Sleep Med. 2009;10(2):182-8.
  • 44 Wilsmore BR, Grunstein RR, Fransen M, Woodward M, Norton R, Ameratunga S. Sleep habits, insomnia, and daytime sleepiness in a large and healthy community-based sample of New Zealanders. J Clin Sleep Med. 2013;9(6):559-66.
  • 45 Ahmed AE, Al-Jahdali F, AlALwan A, Abuabat F, Bin Salih SA, Al-Harbi A, et al. Prevalence of sleep duration among Saudi adults. Saudi Med J. 2017;38(3):276-83.
  • 46 Al-Hazzaa HM, Musaiger AO, Abahussain NA, Al-Sobayel HI, Qahwaji DM. Lifestyle correlates of self-reported sleep duration among Saudi adolescents: a multicentre school-based cross-sectional study. Child Care Health Dev. 2014;40(4):533-42.
  • 47 Liu X, Uchiyama M, Kim K, Okawa M, Shibui K, Kudo Y, et al. Sleep loss and daytime sleepiness in the general adult population of Japan. Psychiatry Res. 2000;93(1):1-11.
  • 48 Broman JE, Lundh LG, Hetta J. Insufficient sleep in the general population. Neurophysiol Clin. 1996;26(1):30-9.
  • 49 Hublin C, Kaprio J, Partinen M, Heikkila K, Koskenvuo M. Daytime sleepiness in an adult, Finnish population. J Intern Med. 1996;239(5):417-23.
  • 50 Yang KI, Kim JH, Hwangbo Y, Koo DL, Kim D, Hwang KJ, et al. Prevalence of Self-Perceived Snoring and Apnea and Their Association with Daytime Sleepiness in Korean High School Students. J Clin Neurol. 2017;13(3):265-72.
  • 51 Hwangbo Y, Kim WJ, Chu MK, Yun CH, Yang KI. Habitual Sleep Duration, Unmet Sleep Need, and Excessive Daytime Sleepiness in Korean Adults. J Clin Neurol. 2016;12(2):194-200.
  • 52 Morita Y, Sasai-Sakuma T, Asaoka S, Inoue Y. Prevalence and Correlates of Insufficient Sleep Syndrome in Japanese Young Adults: A Web-Based Cross-Sectional Study. J Clin Sleep Med. 2015;11(10):1163-9.
  • 53 Aldabal L, Bahammam AS. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J. 2011;5:31-43.
  • 54 Wheaton AG, Jones SE, Cooper AC, Croft JB. Short Sleep Duration Among Middle School and High School Students - United States, 2015. MMWR Morb Mortal Wkly Rep. 2018;67(3):85-90.
  • 55 Chung KF, Cheung MM. Sleep-wake patterns and sleep disturbance among Hong Kong Chinese adolescents. Sleep. 2008;31(2):185-94.
  • 56 Danner F, Phillips B. Adolescent sleep, school start times, and teen motor vehicle crashes. J Clin Sleep Med. 2008;4(6):533-5.
  • 57 Hysing M, Pallesen S, Stormark KM, Lundervold AJ, Sivertsen B. Sleep patterns and insomnia among adolescents: a population-based study. J Sleep Res. 2013;22(5):549-56.
  • 58 Owens JA, Belon K, Moss P. Impact of delaying school start time on adolescent sleep, mood, and behavior. Arch Pediatr Adolesc Med. 2010;164(7):608-14.
  • 59 Owens J. Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics. 2014;134(3):e921-32.
  • 60 Institute of Medicine (US) Committee on Sleep Medicine and Research; Colten HR, Altevogt BM, eds. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Washington: National Academies Press; 2006.
  • 61 Grover V, Malhotra R, Kaur H. Exploring association between sleep deprivation and chronic periodontitis: A pilot study. J Indian Soc Periodontol. 2015;19(3):304-7.
  • 62 Walia HK, Mehra R. Overview of Common Sleep Disorders and Intersection with Dermatologic Conditions. Int J Mol Sci. 2016;17(5). pii: E654.
  • 63 Grandner MA. Sleep, Health, and Society. Sleep Med Clin. 2017;12(1):1-22.
  • 64 Whinnery J, Jackson N, Rattanaumpawan P, Grandner MA. Short and long sleep duration associated with race/ethnicity, sociodemographics, and socioeconomic position. Sleep. 2014;37(3):601-11.
  • 65 Jackson CL, Kawachi I, Redline S, Juon HS, Hu FB. Asian-White disparities in short sleep duration by industry of employment and occupation in the US: a cross-sectional study. BMC Public Health. 2014;14:552.
  • 66 Jackson CL, Redline S, Kawachi I, Williams MA, Hu FB. Racial disparities in short sleep duration by occupation and industry. Am J Epidemiol. 2013;178(9):1442-51.
  • 67 Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep. 2004;27(8):1453-62.
  • 68 Matricciani L, Blunden S, Rigney G, Williams MT, Olds TS. Children’s sleep needs: is there sufficient evidence to recommend optimal sleep for children? Sleep. 2013;36(4):527-34.
  • 69 BaHammam A, Bin Saeed A, Al-Faris E, Shaikh S. Sleep duration and its correlates in a sample of Saudi elementary school children. Singapore Med J. 2006;47(10):875-81.
  • 70 Kotronoulas G, Stamatakis A, Stylianopoulou F. Hormones, hormonal agents, and neuropeptides involved in the neuroendocrine regulation of sleep in humans. Hormones (Athens). 2009;8(4):232-48.
  • 71 Grandner MA, Hale L, Moore M, Patel NP. Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Med Rev. 2010;14(3):191-203.
  • 72 Vgontzas AN, Liao D, Pejovic S, Calhoun S, Karataraki M, Basta M, et al. Insomnia with short sleep duration and mortality: the Penn State cohort. Sleep. 2010;33(9):1159-64.
  • 73 Castro-Costa E, Dewey ME, Ferri CP, Uchôa E, Firmo JO, Rocha FL, et al. Association between sleep duration and all-cause mortality in old age: 9-year follow-up of the Bambui Cohort Study, Brazil. J Sleep Res. 2011;20(2):303-10.
  • 74 Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med. 2006;166(16):1756-62.
  • 75 Gosselin A, De Koninck J, Campbell KB. Total sleep deprivation and novelty processing: implications for frontal lobe functioning. Clin Neurophysiol. 2005;116(1):211-22.
  • 76 Guzman-Marin R, Suntsova N, Stewart DR, Gong H, Szymusiak R, McGinty D. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol. 2003;549(Pt 2):563-71.
  • 77 Haack M, Mullington JM. Sustained sleep restriction reduces emotional and physical well-being. Pain. 2005;119(1-3):56-64.
  • 78 Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008;1129:287-304.
  • 79 Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435-41.
  • 80 Robertson MD, Russell-Jones D, Umpleby AM, Dijk DJ. Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metabolism. 2013;62(2):204-11.
  • 81 Roman V, Van der Borght K, Leemburg SA, Van der Zee EA, Meerlo P. Sleep restriction by forced activity reduces hippocampal cell proliferation. Brain Res. 2005;1065(1-2):53-9.
  • 82 Saletin JM, Goldstein-Piekarski AN, Greer SM, Stark S, Stark CE, Walker MP. Human Hippocampal Structure: A Novel Biomarker Predicting Mnemonic Vulnerability to, and Recovery from, Sleep Deprivation. J Neurosci. 2016;36(8):2355-63.
  • 83 Short MA, Louca M. Sleep deprivation leads to mood deficits in healthy adolescents. Sleep Med. 2015;16(8):987-93.
  • 84 Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219-24.
  • 85 Liu MM, Liu L, Chen L, Yin XJ, Liu H, Zhang YH, et al. Sleep Deprivation and Late Bedtime Impair Sperm Health Through Increasing Antisperm Antibody Production: A Prospective Study of 981 Healthy Men. Med Sci Monit. 2017;23:1842-8.
  • 86 Kuna ST, Maislin G, Pack FM, Staley B, Hachadoorian R, Coccaro EF, et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep. 2012;35(9):1223-33.
  • 87 Allebrandt KV, Amin N, Muller-Myhsok B, Esko T, Teder-Laving M, Azevedo RV, et al. A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry. 2013;18(1):122-32.
  • 88 Spaeth AM, Dinges DF, Goel N. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults. Sci Rep. 2015;5:14920.
  • 89 Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res. 2015;24(5):476-93.
  • 90 Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol. 2009;155(2):231-8.
  • 91 Patel SR, Malhotra A, Gao X, Hu FB, Neuman MI, Fawzi WW. A prospective study of sleep duration and pneumonia risk in women. Sleep. 2012;35(1):97-101.
  • 92 Komada Y, Inoue Y, Hayashida K, Nakajima T, Honda M, Takahashi K. Clinical significance and correlates of behaviorally induced insufficient sleep syndrome. Sleep Med. 2008;9(8):851-6.
  • 93 Kohyama J, Anzai Y, Ono M, Kishino A, Tamanuki K, Takada K, et al. Insufficient sleep syndrome: An unrecognized but important clinical entity. Pediatr Int. 2018 Jan 16. [Epub ahead of print]
  • 94 Orzel-Gryglewska J. Consequences of sleep deprivation. Int J Occup Med Environ Health.. 2010;23(1):95-114.
  • 95 Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A. 2013;110(12):E1132-41.
  • 96 Blunden S, Lushington K, Kennedy D, Martin J, Dawson D. Behavior and neurocognitive performance in children aged 5-10 years who snore compared to controls. J Clin Exp Neuropsychol. 2000;22(5):554-68.
  • 97 Owens JA, Spirito A, McGuinn M, Nobile C. Sleep habits and sleep disturbance in elementary school-aged children. J Dev Behav Pediatr. 2000;21(1):27-36.
  • 98 Roberts RE, Roberts CR, Chen IG. Functioning of adolescents with symptoms of disturbed sleep. J Youth Adolesc. 2001;30(1):1-18.
  • 99 Hafner M, Stepanek M, Taylor J, Troxel WM, van Stolk C. Why sleep matters: the economic costs of insufficient sleep: a cross-country comparative analysis. Rand Health Q. 2017;6(4):11.
  • 100 Morgenthaler TI, Croft JB, Dort LC, Loeding LD, Mullington JM, Thomas SM. Development of the National Healthy Sleep Awareness Project Sleep Health Surveillance Questions. J Clin Sleep Med. 2015;11(9):1057-62.
  • 101 Barnes CM, Drake CL. Prioritizing Sleep Health: Public Health Policy Recommendations. Perspect Psychol Sci. 2015;10(6):733-7.
  • 102 World Health Organization/World Economic Forum and the Harvard School of Public Health. From Burden to “Best Buys”: Reducing the Economic Impact of Non-Communicable Diseases in Low- and Middle- Income Countries; 2011 [cited 2018 Jan 15]. Available from: http://www. who.int/nmh/publications/best_buys_summary.pdf
  • 103 Lira FS, Pimentel GD, Santos RV, Oyama LM, Damaso AR, Oller do Nascimento CM, et al. Exercise training improves sleep pattern and metabolic profile in elderly people in a time-dependent manner. Lipids Health Dis. 2011;10:1-6.
  • 104 Reid KJ, Baron KG, Lu B, Naylor E, Wolfe L, Zee PC. Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep Med. 2010;11(9):934-40.