CC BY-NC-ND 4.0 · Sleep Sci 2020; 13(02): 138-144
DOI: 10.5935/1984-0063.20190146
ORIGINAL ARTICLE

Effect of mild obstructive sleep apnea in mountaineers during the climb to Mount Aconcagua

Alvaro Emilio Ortiz-Naretto
1   Hospital Britanico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires - CABA - Argentina.
2   Hospital Francisco Muñiz, Medicine Respiratory Unit - Buenos Aires - CABA - Argentina.
,
Miriam Patricia Pereiro
3   Hospital Materno Infantil R. Sardá, Laboratory - Buenos Aires - CABA - Argentina.
4   Hospital Pedro Fiorito, Laboratory - Avellaneda - Buenos Aires - Argentina
,
Glenda Ernst
1   Hospital Britanico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires - CABA - Argentina.
,
Juan Manuel Aramburo
5   Laboratorio Dr. Aramburo, Laboratory - Mendoza - Argentina.
,
Ana María Tovo
3   Hospital Materno Infantil R. Sardá, Laboratory - Buenos Aires - CABA - Argentina.
,
Andres Vázquez-Fernández
6   Hospital Universitario Lucus Augusti, Clinical Medicine - Lugo - Spain.
,
Eduardo Borsini
1   Hospital Britanico de Buenos Aires, Medicine Respiratory Unit - Buenos Aires - CABA - Argentina.
› Institutsangaben

ABSTRACT

Objective: to compare mountaineers with and without asymptomatic sleep apnea (OSA) before the ascent and to study high altitude-related sleep disorders, its interaction with metabolic, neuroendocrine and immunological components.

Material and Methods: During an expedition to Mount Aconcagua, researchers assessed the respiratory polygraphy (RP), clinical condition and inflammatory parameters, and rhythm of cortisol secretion in mountaineers sleeping at different altitude camps.

Results: 8 athletes (4 women), 36 years old (25-51) participated. Baseline and final BMI were; 23.6 (20.9-28.7) and 22.77 (20.9-27.7), respectively: p<0.01. 40 valid RP recordings were analyzed. At 746 m.a.s.l. (baseline), only 2 mountaineers presented mild asymptomatic OSA. The OSA group presented baseline apnea-hypopnea index (AHI) values between 5-15 events per hour, which evidence a mild respiratory sleep disorder with AHI increased by altitude depending of central apneas and hypopneas (p<0.05) as high altitude periodic breathing pattern but no increase in obstructive apneas (p<0.01). The circadian rhythm of cortisol was maintained in all cases in which they had not received treatment with dexamethasone and their values increased with the altitude reached. Increased systolic blood pressure was observed in the OSA group.

Conclusion: In a context of hypobaric hypoxia, individuals with pre-existing asymptomatic OSA are prone to experiencing lower oxygen saturations and clinical deterioration.



Publikationsverlauf

Eingereicht: 17. Februar 2019

Angenommen: 23. März 2020

Artikel online veröffentlicht:
09. November 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001 Jul;345(2):107-14.
  • 2 Lemos VA, Santos RVT, Lira FS, Rodrigues B, Tufik S, Mello MT. Can high altitude influence cytokines and sleep?. Me-diators Inflamm. 2013;2013:279365. DOI: https://doi.org/10.1155/2013/279365
  • 3 Nussbaumer-Ochsner Y, Schuepfer N, Ulrich S, et al. Exacerbation of sleep apnoea by frequent central events in pa-tients with the obstructive sleep apnoea syndrome at altitude: a randomised trial. Thorax. 2010 Apr;65(5):429-35.
  • 4 San Martín R, Brito JA, Siques P, León-Velarde F. Obesity as a conditioning factor for high-altitude diseases. Obes Facts. 2017;10(4):363-72.
  • 5 Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with posi-tive airway pressure: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assess-ment. J Clin Sleep Med. 2019 Feb;15(2):301-34.
  • 6 Stradling JR, Davis RJO. Sleep 1: Obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natu-ral history. Thorax. 2004 Jan;59(1):73-8.
  • 7 Mosso A. Respiration on the mountains. In: Mosso A, ed. Life of man on the high alps. London: T Fisher Unwin; 1898. p. 31-50.
  • 8 Bloch KE, Tsogyal DL, Ulrich S. Patients with obstructive sleep apnea at altitude. High Alt Med Biol. 2015 Jun;16(2):110-16.
  • 9 Borsini E, Maldonado L, Décima T. Estrategia de utilización domiciliaria de la poligrafía respiratoria con instalación por el propio paciente. Rev Am Med Resp. 2013;1:4-11.
  • 10 Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: up-date of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Defi-nitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597-19.
  • 11 Andrews G, Ainslie PN, Shepherd K, Dawson A, Swart M, Lucas S, et al. The effect of partial acclimatization to high al-titude on loop gain and central sleep apnoea severity. Respirology. 2012;17(5):835-40.
  • 12 Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnoea. Respirology. 2017 Jan;22(1):43-52.
  • 13 Stanchina M, Robinson K, Corrao W, Donat W, Sands S, Malhotra A. Clinical use loop gain measures to determine con-tinuous positive airway pressure efficacy in patients with complex sleep apnea. A pilot study. Ann Am Thorac Soc. 2015 Sep;12(9):1351-7.
  • 14 Edwards BA, Sands SA, Skuza EM, Stockx EM, Brodecky V, Wilkinson MH, et al. Increased peripheral chemosensitivity via dopaminergic manipulation promotes respiratory instability in lambs. Respir Physiol Neurobiol. 2008;164(3):419-28.
  • 15 Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, et al. Loop gain as a means to predict a positive airway pressure suppression of cheyne-stokes respiration in patients with heart failure. Am J Respir Crit Care Med. 2011 Nov;184(9):1067-75.
  • 16 Bloch KE, Buenzli JC, Latshang TD, Ulrich S. Sleep at high altitude: guesses and facts. J Appl Physiol. 2015 Dec;119(12):1466-80.
  • 17 Ortiz-Naretto AE, Pereiro MP, Ernst G, Borsini EE. Sleep respiratory disturbances during the ascent to Mount Aconca-gua. Sleep Sci. 2018 Jan/MAr;11(1):20-4.
  • 18 Ernst G, Bosio M, Salvado A, Nogueira F, Nigro C, Borsini E. Comparative study between sequential automatic and manual home respiratory polygraphy scoring using a three-channel device: impact of the manual editing of events to identify severe obstructive sleep apnea. Sleep Disord. 2015;2015:314534. DOI: https://doi.org/10.1155/2015/314534
  • 19 Köhnlein T, Welte T, Tan LB, Elliott MW. Central sleep apnoea syndrome in patients with chronic heart disease: a crit-ical review of the current literature. Thorax. 2002 Jun;57(6):547-54.
  • 20 Roach RC, Bartsch P, Oelz O, Hackett PH. The 2018 Lake Louise acute mountain sickness scoring system. In: Shutton JR, Houston CS, Coates G, eds. Hypoxia and molecular Medicine. Burlington, VT: Queen City Press; 1993. p. 272-274.
  • 21 Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991 Dec;14(6):540-5.
  • 22 Pereiro MP, Dure RM, Artana CN. Evaluación de cortisol salival e IgA secretoria en altura moderada. Rev Acta Andina. 2012;76(1):20-7.
  • 23 Bastin P, Maiter D, Gruson D. Le dosage du cortisol salivaire: aspects pré- analytiques et analytiques. Ann Biol Clin. 2018;76(4):393-405. DOI: https://doi.org/10.1684/abc.2018.1355
  • 24 González-Chávez A, Elizondo-Argueta S, Amancio-Chassin O. Relationship between hyperuricemia and metabolic syn-drome in apparently healthy population. Rev Med Hosp Gen Méx. 2011;74(3):132-7.
  • 25 Li N, Peng H, Wang P, Yan YR, Li SQ, Li QY. Nocturnal mean oxygen saturation is associated with secondary polycy-themia in young adults with obstructive sleep apnea, especially in men. Nat Sci Sleep. 2019 Dec;11:377-86.
  • 26 Bloch KE, Latshang TD, Turk AJ, Hess T, Hefti U, Merz TM, et al. Nocturnal periodic breathing during acclimatization at very high altitude at Mount Moztagh Ata (7546 m). Am J Respir Crit Care Med. 2010 Aug;182(4):562-8.
  • 27 Liu HM, Chiang IJ, Kuo KN, Liou CM, Chen C. The effect of acetazolamide on sleep apnea at high altitude: a systemat-ic review and meta-analysis. Ther Adv Respir Dis. 2017 Jan;11(1):20-9.
  • 28 Nussbaumer-Ochsner Y, Ursprung J, Siebenmann C, Maggiorini M, Bloch KE. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep. 2012 Mar;35(3):419-23.
  • 29 Castro JR, Liendo A, Ortiz O, Rosales-Mayor E, Liendo C. Ventilatory cycle measurements and loop gain in central ap-nea in mining drivers exposed to intermittent altitude. J Clin Sleep Med. 2017 Jan;13(1):27-32.
  • 30 Seda G, Han TS. Effect of obstructive sleep apnea on neurocognitive performance. Sleep Med Clin. 2020 Mar;15(1):77-85. DOI: https://doi.org/10.1016/j.jsmc.2019.10.001
  • 31 Niess AM, Fehrenbach E, Strobel G, Roeckere K, Schneider EM, Buergler J, et al. Evaluation of stress responses to in-terval training at low and moderate altitudes. Med Sci Sports Exerc. 2003 Feb;35(2):263-9.
  • 32 Pedersen BK, Steensberg A. Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms?. Med Sci Sports Exerc. 2002 Dec;34(12):2004-12.