Subscribe to RSS

DOI: 10.5935/2526-8732.20210019
Implementing somatic mutation testing in clinical setting: recommendations from a panel of experts.
Implementando testes de mutação somática em ambiente clínico: recomendações de um painel de especialistas.
Financial support: none to declare.
ABSTRACT
There has been a rapid increase in the volume of genomic data gathered from different cancers, this has helped to develop new tumor classifications as well as to select better tailored therapies for the patients. Some of the genomic markers identified are also prognostic and predictive factors. Additionally, many technologies have been used to investigate these alterations, each with different benefits and caveats. The Genomics Committee from the Sociedade Brasileira de Oncologia Clínica (SBOC) put together a group of specialists, from different regions of Brazil that work both in the private and public scenario, to gather and organize the information regarding the utility of somatic mutation testing in solid tumors. This special article summarizes their recommendations on how to better incorporate this information into clinical practice.
Keywords:
Somatic mutation testing - Comprehensive genomic profiling - Genomic medi-cine - Precision oncology.Publication History
Received: 15 June 2021
Accepted: 18 June 2021
Article published online:
30 July 2021
© 2022. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Vladmir Cláudio Cordeiro-de-Lima, Luiz Henrique Araújo, Bernardo Garicochea, Vanderson Rocha, Max Mano, William Nassib William, Aline Lauda Freitas Chaves, Gustavo dos Santos Fernandes, Angelica Nogueira-Rodrigues, Denis Leonardo Jardim, Andreia C Melo, Celso Abdon Mello, Clarissa Serodio Baldotto, Mauro Zukin, Aknar Calabrich, Ana Gelatti, Gilberto deCastro, Thiago Bueno de-Oliveira, Markus Gifoni, Williams Barra, Anelisa K. Coutinho, Renata D'Alpino Peixoto, Carla Rameri de-Azevedo, Eduardo Paulino, José Bines, Romualdo Barroso, Daniel Gimenes, Rafael Aliosha Kaliks, Andre Poisl Fay, Diogo Bugano, Pedro Isaacsson, Carlos Chiattone, Jorge Vaz, Guilherme Duffles, Otavio Baiocchi, Rafael Schmerling, Rodrigo Ramela Munhoz, Rodrigo Guedes, Olavo Feher, Camilla Akemi Felizardo Yamada, Carolina Fittipaldi, Clarissa Maria de Cerqueira Mathias, Renan Orsati Clara, Alesssandro Leal. Implementing somatic mutation testing in clinical setting: recommendations from a panel of experts.. Brazilian Journal of Oncology 2021; 17: e-20210019.
DOI: 10.5935/2526-8732.20210019
-
REFERENCES
- 1 SANGER F.. et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265 (5596) 687-695 1977; https://doi.org/10.1038/265687a0
- 2 REDDY E. P., REYNOLDS R. K., SANTOS E., BARBACID M.. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300 (5888) 149-152 1982; https://doi.org/10.1038/300149a0
- 3 LYNCH T. J.. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England journal of medicine 350 (21) 2129-2139 2004; https://doi.org/10.1056/nejmoa040938
- 4 INTERNATIONAL HUMAN GENOME SEQUENCING C. Finishing the euchromatic sequence of the human genome. Nature 431 (7011) 93145 2004; https://doi.org/10.1038/nature03001
- 5 MEYERSON M., GABRIEL S., GETZ G.. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11 (10) 685-696 2010; https://doi.org/10.1038/nrg2841
- 6 MARDIS E. R.. A decade’s perspective on DNA sequencing technology. Nature,; v 470 (7333) 198-203 2011; https://doi.org/10.1038/nature09796
- 7 WAGLE N.. et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer discovery 2 (1) 82-93 2012; https://doi.org/10.1158/2159-8290.cd-11-0184
- 8 ROYCHOWDHURY S.. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Science translational medicine 3 (111) 111ra21 2011; https://doi.org/10.1126/scitranslmed.3003161
- 9 MERIC-BERNSTAM F., FARHANGFAR C., MENDELSOHN J., MILLS G. B.. Building a personalized medicine infrastructure at a major cancer center. Journal of Clinical Oncology 31 (15) 1849-1857 2013; https://doi.org/10.1200/jco.2012.45.3043
- 10 FRAMPTON G. M.. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31 (11) 1023-1031 2013; https://doi.org/10.1038/nbt.2696
- 11 KALEMKERIAN G. P.. et al. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. Journal of Clinical Oncology 36 (9) 911-919 2018; https://doi.org/10.1200/jco.2017.76.7293
- 12 YOHE S., THYAGARAJAN B.. Review of Clinical Next-Generation Sequencing. Archives of pathology & laboratory medicine 141 (11) 1544-1557 2017; https://doi.org/10.5858/arpa.2016-0501-ra
- 13 SAMORODNITSKY E.. et al. Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Hum Mutat 36 (9) 903-914 2015; https://doi.org/10.1002/humu.22825
- 14 CHANG F., LI M. M.. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet 206 (12) 413-419 2013; https://doi.org/10.1016/j.cancergen.2013.10.003
- 15 KOBOLDT D. C., STEINBERG K. M., LARSON D. E., WILSON R. K., MARDIS E. R.. The next-generation sequencing revolution and its impact on genomics. Cell 155 (1) 27-38 2013; https://doi.org/10.1016/j.cell.2013.09.006
- 16 MAMANOVA L.. et al. Target-enrichment strategies for next-generation sequencing. Nat Methods 7 (2) 111-118 2010; https://doi.org/10.1038/nmeth.1419
- 17 NG S. B.. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461 (7261) 272-276 2009; https://doi.org/10.1038/nature08250
- 18 REHM H. L.. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15 (9) 733-747 2013; https://doi.org/10.1038/gim.2013.92
- 19 RICHMAN S. D.. et al. Results of the UK NEQAS for Molecular Genetics reference sample analysis. J Clin Pathol 71 (11) 989-994 2018; http://dx.doi.org/10.1136/jclinpath-2018-205277
- 20 LI M. M.. et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19 (1) 4-23 2017; https://doi.org/10.1016/j.jmoldx.2016.10.002
- 21 KRIS M. G.. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. Jama 311 (19) 1998-2006 2014; https://doi.org/10.1001/jama.2014.3741
- 22 LINDEMAN N. I.. et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Archives of pathology & laboratory medicine 142 (3) 321-346 2018; https://doi.org/10.5858/arpa.2017-0388-cp
- 23 JAMAL-HANJANI M.. et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. The New England journal of medicine 376 (22) 2109-2121 2017; https://doi.org/10.1056/nejmoa1616288
- 24 ETTINGER D. S.. et al. NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020. Journal of the National Comprehensive Cancer Network 17 (12) 1464-1472 2019; https://doi.org/10.6004/jnccn.2019.0059
- 25 WU Y. L.. et al. Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. The New England journal of medicine 383 (18) 1711-1723 2020; https://doi.org/10.1056/nejmoa2027071
- 26 PLANCHARD D.. et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncolog 29 , suppl 4, iv192-iv237 2018; https://doi.org/10.1093/annonc/mdy275
- 27 MOK T. S.. et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. The New England journal of medicine 376 (7) 629-640 2017; https://doi.org/10.1056/nejmoa1612674
- 28 MCCUSKER M. G., RUSSO A., SCILLA K. A., MEHRA R., ROLFO C.. How I treat ALK-positive non-small cell lung cancer. ESMO open 4 , suppl 2, e000524 2019; https://dx.doi.org/10.1136%2Fesmoopen-2019-000524
- 29 SHAW A. T.. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England journal of medicine 371 (21) 1963-1971 2014; https://www.nejm.org/doi/full/10.1056/nejmoa1406766
- 30 LI S.. et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. British journal of cancer 110 (11) 2812-2820 2014; https://doi.org/10.1038/bjc.2014.210
- 31 LEONETTI A.. et al. BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer treatment reviews 66: 82-94 2018; https://doi.org/10.1016/j.ctrv.2018.04.006
- 32 DRILON A.. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. The New England journal of medicine 378 (8) 7319 2018; https://doi.org/10.1056/nejmoa1714448
- 33 EKMAN S.. HER2: defining a Neu target in nonsmall-cell lung cancer. Annals of oncology 30 (3) 353-355 2019; https://doi.org/10.1093/annonc/mdz043
- 34 DRILON A.. et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nature medicine 26 (1) 47-51 2020; https://doi.org/10.1038/s41591-019-0716-8
- 35 GARON E. B.. et al. Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): Results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM). AACR 2020 80 (16) CT082 2020; https://doi.org/10.1158/1538-7445.AM2020-CT082
- 36 DRILON A.. et al. Registrational Results of LIBRETTO-001: A Phase 1/2 Trial of LOXO-292 in Patients with RET Fusion-Positive Lung Cancers. J Thorac Oncol 14 (10) S6-7 2019; https://doi.org/10.1016/j.jtho.2019.08.059
- 37 RECKAMP K. L.. Molecular Targets Beyond the Big 3. Thoracic surgery clinics 30 (2) 157-164 2020; https://doi.org/10.1016/j.thorsurg.2020.01.004
- 38 DONG L.. et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer. Current genomics 16 (4) 253-263 2015; https://doi.org/10.2174/1389202915666150511205313
- 39 DANIELS M.. et al. Whole genome sequencing for lung cancer. Journal of thoracic disease 4 (2) 155-163 2012; https://dx.doi.org/10.3978%2Fj.issn.2072-1439.2012.02.01
- 40 SEQUIST L. V.. et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Annals of oncology 22 (12) 2616-2624 2011; https://doi.org/10.1093/annonc/mdr489
- 41 LEVY B. P.. et al. Molecular Testing for Treatment of Metastatic Non-Small Cell Lung Cancer: How to Implement Evidence-Based Recommendations. The oncologist 20 (10) 117581 2015; https://doi.org/10.1634/theoncologist.2015-0114
- 42 PENNEL N. A.. et al. Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic Non-Small-Cell Lung Cancer Using a Decision Analytic Model. JCO Precision Oncology 2019;
- 43 FRANCIS G., STEIN S.. Circulating Cell-Free Tumour DNA in the Management of Cancer. International Journal of Molecular Sciences 16 (6) 14122-42 2015; https://doi.org/10.3390/ijms160614122
- 44 KRISHNAMURTHY N., SPENCER E., TORKAMANI A., NICHOLSON L.. Liquid Biopsies for Cancer: Coming to a Patient near You. Journal of Clinical Medicine 6 (1) 3 2017; https://dx.doi.org/10.3390%2Fjcm6010003
- 45 CHENG F., SU L., QIAN C.. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7 (30) 48832-41 2016; https://doi.org/10.18632/oncotarget.9453
- 46 SHU Y.. et al. Circulating Tumor DNA Mutation Profiling by Targeted Next Generation Sequencing Provides Guidance for Personalized Treatments in Multiple Cancer Types. Scientific reports 7 (1) 583 2017; https://doi.org/10.1038/s41598-017-00520-1
- 47 CHEN K. Z.. et al. Circulating Tumor DNA Detection in Early-Stage Non-Small Cell Lung Cancer Patients by Targeted Sequencing. Scientific reports 6: 31985 2016; https://doi.org/10.1038/srep31985
- 48 SCHWAEDERLE M. C.. et al. Utility of Genomic Assessment of Blood-Derived Circulating Tumor DNA (ctDNA) in Patients with Advanced Lung Adenocarcinoma. Clinical Cancer Research 23 (17) 5101-5111 2017; https://doi.org/10.1158/1078-0432.ccr-16-2497
- 49 CHAE Y. K.. et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget 7 (40) 65364-73 2016; https://doi.org/10.18632/oncotarget.11692
- 50 LINDEMAN N. I.. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Journal of Thoracic Oncology 8 (7) 823-859 2013; https://doi.org/10.1097/jto.0b013e318290868f
- 51 SHOLL L. M.. et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. The American Journal of Surgical Pathology 37 (9) 1441-1449 2013; https://doi.org/10.1097/pas.0b013e3182960fa7
- 52 LEEMANS C. R., SNIJDERS P. J. F., BRAKENHOFF R. H.. The molecular landscape of head and neck cancer. Nat Rev Cancer 18 (5) 269-282 2018; https://doi.org/10.1038/nrc.2018.11
- 53 MAGHAMI E.. et al. Diagnosis and Management of Squamous Cell Carcinoma of Unknown Primary in the Head and Neck: ASCO Guideline. Journal of Clinical Oncology 38 (22) 2570-2596 2020; https://doi.org/10.1200/jco.20.00275
- 54 BURTNESS B.. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394 , 10.212, 1915-1928 2019; https://doi.org/10.1016/s0140-6736(19)32591-7
- 55 Burtness B, Rischin D, Greil R. et al. Efficacy of first-line (1L) pembrolizumab by PD-L1 combined positive score <1, 1-19, and =20 in recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): KEYNOTE-048 subgroup analysis. Cancer Res 2020; 80 , 16 Supplement, LB-258-LP-LB-258
- 56 SKALOVA A.. et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. The American Journal of Surgical Pathology 34 (5) 599-608 2010; https://doi.org/10.1097/pas.0b013e3181d9efcc
- 57 BISHOP J. A., YONESCU R., BATISTA D., BEGUM S., EISELE D.W., WESTRA W. H.. Utility of mammaglobin immunohistochemistry as a proxy marker for the ETV6-NTRK3 translocation in the diagnosis of salivary mammary analogue secretory carcinoma. Hum Pathol 44 (10) 1982-1988 2013; https://doi.org/10.1016/j.humpath.2013.03.017
- 58 BOON E.. et al. Clinicopathological characteristics and outcome of 31 patients with ETV6-NTRK3 fusion gene confirmed (mammary analogue) secretory carcinoma of salivary glands. Oral Oncol 82: 29-33 2018; https://doi.org/10.1016/j.oraloncology.2018.04.022
- 59 URANO M., NAGAO T., MIYABE S., ISHIBASHI K., HIGUCHI K., KURODA M.. Characterization of mammary analogue secretory carcinoma of the salivary gland: discrimination from its mimics by the presence of the ETV6-NTRK3 translocation and novel surrogate markers. Hum Pathol 46 (1) 94-103 2015; https://doi.org/10.1016/j.humpath.2014.09.012
- 60 PENAULT-LLORCA F., RUDZINSKI E. R., SEPULVEDA A. R.. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol 72 (7) 460-467 2019; https://doi.org/10.1136/jclinpath-2018-205679
- 61 BRZEZIANSKA E., KARBOWNIK M., MIGDALSKA-SEK M., PASTUSZAK-LEWANDOSKA D., WLOCH J., LEWINSKI A.. Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res 599 , 1–2, 26-35 2006; https://doi.org/10.1016/j.mrfmmm.2005.12.013
- 62 SOLOMON J. P.. et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Modern pathology 33 (1) 38-46 2020; https://doi.org/10.1038/s41379-019-0324-7
- 63 OKAMURA R., BOICHARD A., KATO S., SICKLICK J. K., BAZHENOVA L., KURZROCK R.. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precision Oncology 2018;
- 64 STRANSKY N., CERAMI E., SCHALM S., KIM J. L., LENGAUER C.. The landscape of kinase fusions in cancer. Nature Communications 5: 4846 2014; https://doi.org/10.1038/ncomms5846
- 65 HECHTMAN J. F.. et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. The American Journal of Surgical Pathology 41 (11) 1547-1551 2017; https://doi.org/10.1097/pas.0000000000000911
- 66 SOLOMON J. P., BENAYED R., HECHTMAN J. F., LADANYI M.. Identifying patients with NTRK fusion cancer. Annals of Oncology 30 , suppl 8, viii16-viii22 2019; https://doi.org/10.1093/annonc/mdz384
- 67 DOEBELE R. C.. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. The Lancet Oncology 21 (2) 271-282 2020; https://doi.org/10.1016/s14702045(19)30691-6
- 68 LOCATI L. D.. et al. Treatment relevant target immunophenotyping of 139 salivary gland carcinomas (SGCs). Oral Oncol 45 (11) 986-990 2009; https://doi.org/10.1016/j.oraloncology.2009.05.635
- 69 CLAUDITZ T. S.. et al. Human epidermal growth factor receptor 2 (HER2) in salivary gland carcinomas. Pathology 43 (5) 459-464 2011; https://doi.org/10.1097/pat.0b013e3283484a60
- 70 BOON E.. et al. A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from The Netherlands. Int J Cancer 143 (4) 758-766 2018; https://doi.org/10.1002/ijc.31353
- 71 GILBERT M. R.. et al. A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol Head Neck Surg 142 (5) 489-495 2016; https://doi.org/10.1001/jamaoto.2015.3930
- 72 DALIN M. G.. et al. Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer. Clinical cancer research 22 (18) 4623-4633 2016; https://doi.org/10.1158/1078-0432.ccr-16-0637
- 73 MASUBUCHI T.. et al. Clinicopathological significance of androgen receptor, HER2, Ki-67 and EGFR expressions in salivary duct carcinoma. Int J Clin Oncol 20 (1) 35-44 2015; https://doi.org/10.1007/s10147-014-0674-6
- 74 SHIMURA T.. et al. Prognostic and histogenetic roles of gene alteration and the expression of key potentially actionable targets in salivary duct carcinomas. Oncotarget,; v 9 (2) 1852-1867 2018; https://doi.org/10.18632/oncotarget.22927
- 75 TAKASE S.. et al. Biomarker immunoprofile in salivary duct carcinomas: clinicopathological and prognostic implications with evaluation of the revised classification. Oncotarget 8 (35) 59023-35 2017; https://doi.org/10.18632/oncotarget.19812
- 76 DAGRADA G. P.. et al. HER-2/neu assessment in primary chemotherapy treated breast carcinoma: no evidence of gene profile changing. Breast Cancer Res Treat 80 (2) 207-214 2003; https://doi.org/10.1023/a:1024579206250
- 77 WOLFF A. C.. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of Clinical Oncology 31 (31) 3997-4013 2013; https://doi.org/10.1200/jco.2013.50.9984
- 78 TAKAHASHI H.. et al. Phase II Trial of Trastuzumab and Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2-Positive Salivary Duct Carcinoma. Journal of Clinical Oncology 37 (2) 125-134 2019; https://doi.org/10.1200/jco.18.00545
- 79 LIMAYE S. A.. et al. Trastuzumab for the treatment of salivary duct carcinoma. The oncologist 18 (3) 294-300 2013; https://doi.org/10.1634/theoncologist.2012-0369
- 80 PERISSINOTTI A. J., LEE PIERCE M., PACE M. B., EL-NAGGAR A., KIES M. S., KUPFERMAN M.. The role of trastuzumab in the management of salivary ductal carcinomas. Anticancer Res 33 (6) 2587-2591 2013;
- 81 PARK J. C.. et al. Exceptional responses to pertuzumab, trastuzumab, and docetaxel in human epidermal growth factor receptor-2 high expressing salivary duct carcinomas. Head Neck 40 (12) E100-E6 2018; https://doi.org/10.1002/hed.25392
- 82 KURZROCK R.. et al. Targeted therapy for advanced salivary gland carcinoma based on molecular profiling: results from MyPathway, a phase IIa multiple basket study. Annals of Oncology 31 (3) 412-421 2020; https://doi.org/10.1016/j.annonc.2019.11.018
- 83 JHAVERI K. L.. et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH trial (EAY131) subprotocol Q. Annals of Oncology 30 (11) 1821-1830 2019; https://doi.org/10.1093/annonc/mdz291
- 84 SWED B. L., COHEN R. B., AGGARWAL C.. Targeting HER2/neu Oncogene Overexpression With Ado-Trastuzumab Emtansine in the Treatment of Metastatic Salivary Gland Neoplasms: A Single-Institution Experience. JCO Precision Oncology 3 2019;
- 85 TSURUTANI J.. et al. Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer discovery 10 (5) 688-701 2020; https://doi.org/10.1158/2159-8290.cd-19-1014
- 86 HANNA G. J.. et al. The Benefits of Adjuvant Trastuzumab for HER-2-Positive Salivary Gland Cancers. The oncologist 25 (7) 598-608 2020; https://doi.org/10.1634/theoncologist.2019-0841
- 87 MITANI Y.. et al. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clinical Cancer Research 20 (24) 6570-6581 2014; https://doi.org/10.1158/1078-0432.ccr-14-1746
- 88 BUTLER R. T., SPECTOR M. E., THOMAS D., MCDANIEL A. S., MCHUGH J. B.. An immunohistochemical panel for reliable differentiation of salivary duct carcinoma and mucoepidermoid carcinoma. Head Neck Pathol 8 (2) 133-140 2014; https://doi.org/10.1007/s12105-013-0493-5
- 89 CROS J.. et al. Expression and mutational status of treatment-relevant targets and key oncogenes in 123 malignant salivary gland tumours. Annals of Oncology 24 (10) 2624-2629 2013; https://doi.org/10.1093/annonc/mdt338
- 90 WILLIAMS M. D.. et al. Differential expression of hormonal and growth factor receptors in salivary duct carcinomas: biologic significance and potential role in therapeutic stratification of patients. The American Journal of Surgical Pathology 31 (11) 1645-1652 2007; https://doi.org/10.1097/pas.0b013e3180caa099
- 91 LIANG L., WILLIAMS M. D., BELL D.. Expression of PTEN, Androgen Receptor, HER2/neu, Cytokeratin 5/6, Estrogen Receptor-Beta, HMGA2, and PLAG1 in Salivary Duct Carcinoma. Head Neck Pathol 13 (4) 529-534 2019; https://doi.org/10.1007/s12105-018-0984-5
- 92 VISCUSE P. V., PRICE K. A., GARCIA J. J., SCHEMBRI-WISMAYER D. J., CHINTAKUNTLAWAR A. V.. First Line Androgen Deprivation Therapy vs. Chemotherapy for Patients With Androgen Receptor Positive Recurrent or Metastatic Salivary Gland Carcinoma-A Retrospective Study. Front Oncol 9: 701 2019; https://dx.doi.org/10.3389%2Ffonc.2019.00701
- 93 LOCATI L. D.. et al. Clinical activity of androgen deprivation therapy in patients with metastatic/relapsed androgen receptor-positive salivary gland cancers. Head Neck; v 38 (5) 724-731 2016; https://doi.org/10.1002/hed.23940
- 94 BOON E.. et al. Androgen deprivation therapy for androgen receptor-positive advanced salivary duct carcinoma: A nationwide case series of 35 patients in The Netherlands. Head Neck 40 (3) 605-613 2018; https://doi.org/10.1002/hed.25035
- 95 FUSHIMI C.. et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Annals of Oncology 29 (4) 979-984 2018; https://doi.org/10.1093/annonc/mdx771
- 96 ISAACSSON VELHO P. , et al. Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. The Prostate 78 (5) 401-407 2018; https://doi.org/10.1002/pros.23484
- 97 VAN BOXTEL W.. et al. Adjuvant androgen deprivation therapy for poor-risk, androgen receptor-positive salivary duct carcinoma. Eur J Cancer 110: 62-70 2019; https://doi.org/10.1016/j.ejca.2018.12.035
- 98 NIKIFOROVA M. N., WALD A. I., ROY S., DURSO M. B., NIKIFOROV Y. E. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. The Journal of Clinical Endocrinology and Metabolism 98 (11) E1852-60 2013; https://doi.org/10.1210/jc.2013-2292
- 99 YOUNIS E.. Oncogenesis of Thyroid Cancer. Asian Pacific journal of cancer prevention 18 (5) 1191-1199 2017; https://dx.doi.org/10.22034%-2FAPJCP.2017.18.5.1191
- 100 SANDULACHE V. C.. et al. Real-Time Genomic Characterization Utilizing Circulating Cell-Free DNA in Patients with Anaplastic Thyroid Carcinoma. Thyroid 27 (1) 81-87 2017; https://doi.org/10.1089/thy.2016.0076
- 101 SUBBIAH V.. et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. Journal of Clinical Oncology 36 (1) 7-13 2018; https://doi.org/10.1200/jco.2017.73.6785
- 102 XU X.. et al. Detection of BRAF V600E mutation in fine-needle aspiration fluid of papillary thyroid carcinoma by droplet digital PCR. Clinica Chimica Acta 491: 91-96 2019; https://doi.org/10.1016/j.cca.2019.01.017
- 103 LE D. T.. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England Journal of Medicine 372 (26) 2509-2520 2015; https://doi.org/10.1056/nejmoa1500596
- 104 OVERMAN M. J.. et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. Journal of Clinical Oncology 36 (8) 773-779 2018; https://doi.org/10.1200/jco.2017.76.9901
- 105 MARABELLE A.. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology 38 (1) 1-10 2020; https://doi.org/10.1200/jco.19.02105
- 106 ANDRE T.. et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/ mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 Study. Journal of Clinical Oncology 38 (18) 2020;
- 107 WANG F.. et al. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA oncology 5 (10) 1504-1506 2019; https://doi.org/10.1001/jamaoncol.2019.2963
- 108 SARGENT D. J.. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. Journal of Clinical Oncology 28 (20) 3219-3226 2010; https://doi.org/10.1200/jco.2009.27.1825
- 109 SMYTH E. C.. et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA oncology 3 (9) 1197-1203 2017; https://doi.org/10.1001/jamaoncol.2016.6762
- 110 CHOI Y. Y.. et al. Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled study. Ann Surg 270 (2) 309-316 2019; https://doi.org/10.1097/sla.0000000000002803
- 111 GATALICA Z., XIU J., SWENSEN J., VRANIC S.. Molecular characterization of cancers with NTRK gene fusions. Modern pathology 32 (1) 147-153 2019; https://doi.org/10.1038/s41379-018-0118-3
- 112 COCCO E.. et al. Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Res 79 (6) 1047-1053 2019; https://doi.org/10.1158/0008-5472.can-18-3126
- 113 AKIYAMA T., SUDO C., OGAWARA H., TOYOSHIMA K., YAMAMOTO T.. The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232 (4758) 1644-1646 1986; https://doi.org/10.1126/science.3012781
- 114 VAN CUTSEM E., SAGAERT X., TOPAL B., HAUSTERMANS K., PRENEN H.. Gastric cancer. Lancet 388 , 10060, 2654-2664 2016; https://doi.org/10.1016/s0140-6736(16)30354-3
- 115 VAN CUTSEM E. , et al HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 18 (3) 476-484 2015; https://doi.org/10.1007/s10120-014-0402-y
- 116 SHITARA K.. et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. The New England Journal of Medicine 382 (25) 2419-2430 2020;
- 117 JUSAKUL A.. et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer discovery 7 (10) 1116-1135 2017; https://doi.org/10.1158/2159-8290.cd-17-0368
- 118 JAVLE M.. et al. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer 122 (24) 3838-3847 2016; https://doi.org/10.1002/cncr.30254
- 119 ABOU-ALFA G. K.. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. The Lancet Oncology 21 (5) 671-684 2020; https://doi.org/10.1016/S14702045(20)30109-1
- 120 BATTAGLIN F.. et al. Comprehensive molecular profiling of IDH1/2 mutant biliary cancers (BC). Journal of Clinical Oncology 38 (4) 479-479 2020;
- 121 ABOU-ALFA G. K.. et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Oncology 21 (6) 796-807 2020; https://doi.org/10.1016/s1470-2045(20)30157-1
- 122 WAINBERG Z. A.. et al. Efficacy and safety of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF V600E-mutated biliary tract cancer (BTC): A cohort of the ROAR basket trial. Journal of Clinical Oncology 37 (4) 187 2019;
- 123 JAVLE M.. et al. HER2/neu-directed therapy for biliary tract cancer. J Hematol Oncol 8: 58 2015; https://doi.org/10.1186/s13045-015-0155-z
- 124 MERIC-BERNSTAM F.. et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. The Lancet Oncology 20 (4) 518-530 2019; https://doi.org/10.1016/s1470-2045(18)30904-5
- 125 MALUMBRES M., BARBACID M.. RAS oncogenes: the first 30 years. Nat Rev Cancer 3 (6) 459-465 2003; https://doi.org/10.1038/nrc1097
- 126 ANDREYEV H. J.. et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. British Journal of Cancer 85 (5) 6926 2001; https://doi.org/10.1054/bjoc.2001.1964
- 127 SCHUBBERT S., SHANNON K., BOLLAG G.. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7 (4) 295-308 2007; https://doi.org/10.1038/nrc2109
- 128 VAN CUTSEM E. , et al Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. Journal of Clinical Oncology 29 (15) 2011-2019 2011; https://doi.org/10.1200/jco.2010.33.5091
- 129 DOUILLARD J. Y.. et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. Journal of Clinical Oncology 28 (31) 4697-4705 2010; https://doi.org/10.1200/jco.2009.27.4860
- 130 DOUILLARD J. Y.. et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. The New England Journal of Medicine 369 (11) 1023-1034 2013;
- 131 KARAPETIS C. S.. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. The New England Journal of Medicine 359 (17) 1757-1765 2008; https://doi.org/10.1056/nejmoa0804385
- 132 AMADO R. G.. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. Journal of Clinical Oncology 26 (10) 1626-1634 2008; https://doi.org/10.1200/jco.2007.14.7116
- 133 RAJAGOPALAN H., BARDELLI A., LENGAUER C., KINZLER K. W., VOGELSTEIN B., VELCULESCU V. E. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418 (6901) 934 2002; https://doi.org/10.1038/418934a
- 134 SELIGMANN J. F.. et al. Exploring the poor outcomes of BRAF mutant (BRAF mut) advanced colorectal cancer (aCRC): Analysis from 2,530 patients (pts) in randomized clinical trials (RCTs). Journal of Clinical Oncology 33 (15) 3509-3509 2015;
- 135 DE ROOCK W.. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. The Lancet Oncology 11 (8) 753-762 2010; https://doi.org/10.1016/s1470-2045(10)70130-3
- 136 LOUPAKIS F.. et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. The New England Journal of Medicine 371 (17) 1609-1618 2014; https://doi.org/10.1056/nejmoa1403108
- 137 KOPETZ S.. et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG 1406). Journal of Clinical Oncology 35 (4) 520-520 2017; https://doi.org/10.1200/jco.20.01994
- 138 KOPETZ S.. et al. Encorafenib plus cetuximab with or without binimetinib for BRAF V600E metastatic colorectal cancer: Updated survival results from a randomized, three-arm, phase III study versus choice of either irinotecan or FOLFIRI plus cetuximab (BEACON CRC). Journal of Clinical Oncology 38 (15) 4001-4001 2020;
- 139 KOPETZ S.. et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. The New England Journal of Medicine 381 (17) 1632-1643 2019; https://doi.org/10.1056/nejmoa1908075
- 140 PIETRANTONIO F.. et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 51 (5) 587-594 2015; https://doi.org/10.1016/j.ejca.2015.01.054
- 141 JONES J. C.. et al. (Non-V600) BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. Journal of Clinical Oncology 35 (23) 2624-2630 2017; https://doi.org/10.1200/jco.2016.71.4394
- 142 SARTORE-BIANCHI A.. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. The Lancet Oncology 17 (6) 738-746 2016; https://doi.org/10.1016/s1470-2045(16)00150-9
- 143 SIENA S.. et al. A phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): DESTINY-CRC01. Journal of Clinical Oncology 38 (15) 4000-4000 2020;
- 144 NCCN. Uterine neoplasms. 2020 Available at: https://wwwnccnorg/professionals/physician_gls/pdf/uterinepdf
- 145 SGO. SGO Clinical Practice Statement: screening for lynch syndrome in endometrial cancer. 2014 Available at: https://wwwsgoorg/resources/screening-for-lynch-syndrome-in-endometrial-cancer/
- 146 CANCER GENOME ATLAS RESEARCH NETWORK. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497 (7447) 67-73 2013; https://doi.org/10.1038/nature12113
- 147 HECHTMAN J. F.. et al. Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes. Modern pathology 33 (5) 871-879 2020; https://doi.org/10.1038/s41379-019-0414-6
- 148 TALHOUK A.. et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 123 (5) 802-813 2017; https://doi.org/10.1002/cncr.30496
- 149 KOMMOSS S.. et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Annals of Oncology 29 (5) 1180-1188 2018; https://doi.org/10.1093/annonc/mdy058
- 150 STELLOO E.. et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Modern pathology 28 (6) 836-844 2015; https://doi.org/10.1038/modpathol.2015.43
- 151 LE D. T.. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357 (6349) 409-413 2017; https://doi.org/10.1126/science.aan6733
- 152 KONSTANTINOPOULOS P. A.. et al. Phase II Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch Repair Proficient Recurrent/Persistent Endometrial Cancer. Journal of Clinical Oncology 37 (30) 2786-2794 2019; https://doi.org/10.1200/jco.19.01021
- 153 LIU J. F.. et al. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers. Gynecologic oncology 154 (2) 314-322 2019; https://doi.org/10.1016/j.ygyno.2019.05.021
- 154 OAKNIN A.. et al. Preliminary safety, efficacy, and PK/PD characterization from GARNET, a phase I clinical trial of the anti-PD-1 monoclonal antibody, TSR-042, in patients with recurrent or advanced MSI-H endometrial cancer. ESMO 29 (8) VIII334 2018; https://doi.org/10.1093/annonc/mdy285.144
- 155 WORTMAN B. G.. et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: improving patient selection for adjuvant therapy. British Journal of Cancer 119 (9) 1067-1074 2018; https://doi.org/10.1038/s41416-018-0310-8
- 156 FADER A. N.. et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor 2/neu. Journal of Clinical Oncology 36 (20) 2044-2051 2018; https://doi.org/10.1200/jco.2017.76.5966
- 157 FADER A. N.. et al. Randomized phase II trial of carboplatin-paclitaxel compared to carboplatin-paclitaxel-trastuzumab in advanced or recurrent uterine serous carcinomas that overexpress Her2/neu (NCT01367002): Updated survival analysis. . SGO 2020 Available at: https://sgoconfexcom/sgo/2020/meetingappcgi/Paper/16297
- 158 THIGPEN J. T.. et al. Oral medroxyprogesterone acetate in the treatment of advanced or recurrent endometrial carcinoma: a dose-response study by the Gynecologic Oncology Group. Journal of Clinical Oncology 17 (6) 1736-1744 1999; https://doi.org/10.1200/jco.1999.17.6.1736
- 159 DECRUZE S. B., GREEN J. A. Hormone therapy in advanced and recurrent endometrial cancer: a systematic review. International Journal of Gynecological Cancer 17 (5) 964-978 2007; https://doi.org/10.1111/j.1525-1438.2007.00897.x
- 160 COLOMBO N.. et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Annals of oncology 27 (1) 16-41 2016; https://doi.org/10.1093/annonc/mdv484
- 161 EL GHONAIMY E. , et al Serum gastrin in chronic renal failure: morphological and physiological correlations. Nephron 39 (2) 86-94 1985; https://doi.org/10.1159/000183350
- 162 MOSCHETTA M., GEORGE A., KAYE S. B., BANERJEE S.. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Annals of Oncology 27 (8) 1449-1455 2016; https://doi.org/10.1093/annonc/mdw142
- 163 MOORE K.. et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England Journal of Medicine 379 (26) 2495-2505 2018; https://doi.org/10.1056/nejmoa1810858
- 164 GONZALEZ-MARTIN A.. et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England Journal of Medicine 381 (25) 2391-2402 2019; https://doi.org/10.1056/nejmoa1910962
- 165 COLEMAN R. L.. et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. The New England Journal of Medicine 381 (25) 2403-2415 2019;
- 166 RAY-COQUARD I.. et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. The New England Journal of Medicine 381 (25) 2416-2428 2019; https://doi.org/10.1056/nejmoa1911361
- 167 PUJADE-LAURAINE E.. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology 18 (9) 1274-1284 2017; https://doi.org/10.1016/s1470-2045(17)30469-2
- 168 LEDERMANN J.. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. The New England Journal of Medicine 366 (15) 1382-1392 2012;
- 169 COLEMAN R. L.. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390 , 10106 1949-1961 2017; https://doi.org/10.1016/s0140-6736(17)32440-6
- 170 NCCN. Ovarian cancer. 2020 Available at: https://wwwnccnorg/professionals/physician_gls/pdf/ovarianpdf
- 171 LEDERMANN J. A.. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines. Ann Oncol 24 , suppl 6, vi24vi32 2013; https://doi.org/10.1093/annonc/mdt333
- 172 KONSTANTINOPOULOS P. A.. et al. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. Journal of Clinical Oncology 38 (11) 1222-1245 2020; https://doi.org/10.1200/jco.19.02960
- 173 BERTUCCI F.. et al. Genomic characterization of metastatic breast cancers. Nature 569 (7757) 560-564 2019; https://doi.org/10.1038/s41586-019-1056-z
- 174 LI A., SCHLEICHER S. M., ANDRE F., MITRI Z. I.. Genomic Alteration in Metastatic Breast Cancer and Its Treatment. American Society of Clinical Oncology educational book 40: 1-14 2020; https://doi.org/10.1200/edbk_280463
- 175 CONDORELLI R.. et al. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Annals of Oncology 30 (3) 365-373 2019; https://doi.org/10.1093/annonc/mdz036
- 176 MOASSER M. M., KROP I. E.. The Evolving Landscape of HER2 Targeting in Breast Cancer. JAMA oncology 1 (8) 1154-1161 2015; https://doi.org/10.1001/jamaoncol.2015.2286
- 177 ANDRE F.. et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. The New England Journal of Medicine 380 (20) 1929-1940 2019; https://doi.org/10.1056/nejmoa1813904
- 178 CORTES-CIRIANO I., LEE S., PARK W. Y., KIM T. M., PARK P. J.. A molecular portrait of microsatellite instability across multiple cancers. Nature communications 8: 15180 2017; https://doi.org/10.1038/ncomms15180
- 179 MARCUS L., LEMERY S. J., KEEGAN P., PAZDUR R.. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clinical Cancer Research 25 (13) 3753-3758 2019; https://doi.org/10.1158/1078-0432.ccr-18-4070
- 180 AMATU A., SARTORE-BIANCHI A., SIENA S.. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO open 1 (2) e000023 2016; https://doi.org/10.1136/esmoopen-2015-000023
- 181 ROSS J. S.. et al. NTRK fusions in breast cancer: Clinical, pathologic and genomic findings. Cancer Res 78 (4) P2-09-15 2018; https://doi.org/10.1158/1538-7445.SABCS17-P2-09-15
- 182 COCCO E., SCALTRITI M., DRILON A.. NTRK fusion-positive cancers and TRK inhibitor therapy. Nature Reviews Clinical oncology 15 (12) 731-747 2018; https://doi.org/10.1038/s41571-018-0113-0
- 183 FDA approves pembrolizumab for adults and children with TMB-H solid tumors. 2020 Available at: https://wwwfdagov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors
- 184 BARROSO-SOUSA R.. et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Annals of Oncology 31 (3) 387-394 2020; https://doi.org/10.1016/j.annonc.2019.11.010
- 185 ANGUS L.. et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nature genetics 51 (10) 1450-1458 2019; https://doi.org/10.1038/s41588-019-0507-7
- 186 WINER E.. et al. Association of tumor mutational burden (TMB) and clinical outcomes with pembrolizumab (pembro) versus chemotherapy (chemo) in patients with metastatic triple-negative breast cancer (mTNBC) from KEYNOTE-119. Journal of Clinical Oncology 38 (15) 1013 2020;
- 187 BARROSO-SOUSA R.. et al. Tumor Mutational Burden and PTEN Alterations as Molecular Correlates of Response to PD-1/L1 Blockade in Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research 26 (11) 2565-2572 2020; https://doi.org/10.1158/1078-0432.ccr-19-3507
- 188 ALVA A. S.. et al. Pembrolizumab (P) in patients (pts) with metastatic breast cancer (MBC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. Journal of Clinical Oncology 37 (15) 1014 2019;
- 189 ROBSON M.. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. The New England Journal of Medicine 377 (6) 523-533 2017; https://doi.org/10.1056/nejmoa1706450
- 190 LITTON J. K.. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. The New England Journal of Medicine 379 (8) 753-763 2018; https://doi.org/10.1056/nejmoa1802905
- 191 TUTT A.. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nature medicine 24 (5) 628-637 2018; https://doi.org/10.1038/s41591-018-0009-7
- 192 TUNG N. M.. et al. TBCRC 048: A phase II study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (Olaparib Expanded). Journal of Clinical Oncology 38 (15) 1002 2020; https://doi.org/10.1200/jco.20.02151
- 193 LIN N. U.. et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with previously treated HER2+ metastatic breast cancer with brain metastases (HER2CLIMB). Journal of Clinical Oncology 38 (15) 1005 2020;
- 194 ROSS J. S.. et al. Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti-HER2 targeted therapies. Cancer 122 (17) 2654-2662 2016; https://doi.org/10.1002/cncr.30102
- 195 SMYTH L. M.. et al. Efficacy and Determinants of Response to HER Kinase Inhibition in HER2-Mutant Metastatic Breast Cancer. Cancer discovery 10 (2) 198-213 2020; https://doi.org/10.1158/2159-8290.CD-19-0966
- 196 LE TOURNEAU C.. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. The Lancet Oncology 16 (13) 1324-1334 2015; https://doi.org/10.1016/s1470-2045(15)00188-6
- 197 ANDRE F.. et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). The Lancet Oncology 15 (3) 267-274 2014; https://doi.org/10.1016/s1470-2045(13)70611-9
- 198 MASSARD C.. et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer discovery 7 (6) 586-595 2017; https://doi.org/10.1158/2159-8290.cd-16-1396
- 199 CARDOSO F.. et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)dagger. Annals of Oncology 29 (8) 1634-1657 2018; https://doi.org/10.1093/annonc/mdy192
- 200 EGGENER S. E.. et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. Journal of Clinical Oncology 38 (13) 1474-1494 2020;
- 201 MOHLER J. L.. et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network 17 (5) 479-505 2019; https://doi.org/10.6004/jnccn.2019.0023
- 202 DEN R. B.. et al. Decipher correlation patterns post prostatectomy: initial experience from 2 342 prospective patients. Prostate cancer and prostatic diseases 19 (4) 374-379 2016; https://doi.org/10.1038/pcan.2016.38
- 203 CHANG E. M., PUNGLIA R. S., STEINBERG M. L., RALDOW A. C.. Cost Effectiveness of the Oncotype DX Genomic Prostate Score for Guiding Treatment Decisions in Patients With Early Stage Prostate Cancer. Urology 126: 89-95 2019; https://doi.org/10.1016/j.urology.2018.12.016
- 204 HEALTH QUALITY O. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment. Ontario Health Technology Assessment Series 17 (6) 1-75 2017;
- 205 CASTRO E.. et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. European urology 68 (2) 186-193 2015; https://doi.org/10.1016/j.eururo.2014.10.022
- 206 CASTRO E.. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. Journal of Clinical Oncology 31 (14) 1748-1757 2013; https://doi.org/10.1200/jco.2012.43.1882
- 207 RODRIGUES D. N.. et al. Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. The Journal of clinical investigation 128 (10) 4441-4453 2018; https://doi.org/10.1172/jci121924
- 208 MARSHALL C. H., FU W., WANG H., BARAS A. S., LOTAN T. L, ANTONARAKIS E. S. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage. Prostate cancer and prostatic diseases 22 (1) 59-65 2019; https://doi.org/10.1038/s41391-018-0086-1
- 209 ISAACSSON VELHO P. , et al Molecular Characterization and Clinical Outcomes of Primary Gleason Pattern 5 Prostate Cancer After Radical Prostatectomy. JCO Precision Oncology 3 2019;
- 210 ROBINSON D.. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161 (5) 1215-1228 2015; https://doi.org/10.1016/j.cell.2015.05.001
- 211 PRITCHARD C. C.. et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. The New England Journal of Medicine 375 (5) 443-453 2016;
- 212 MATEO J.. et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. The New England Journal of Medicine 373 (18) 1697-1708 2015;
- 213 DE BONO J.. et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. The New England Journal of Medicine 382 (22) 2091-2102 2020; https://doi.org/10.1056/nejmoa1911440
- 214 HUSSAIN M.. et al. Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. Journal of Clinical Oncology 36 (10) 991-999 2018; https://doi.org/10.1200/jco.2017.75.7310
- 215 HUSSAIN M.. et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. The New England Journal of Medicine 383 (24) 2345-2357 2020; https://doi.org/10.1056/nejmoa2022485
- 216 ISAACSSON VELHO P. , et al Efficacy of Radium-223 in Bone-metastatic Castration-resistant Prostate Cancer with and Without Homologous Repair Gene Defects. European urology 76 (2) 170-176 2019; https://doi.org/10.1016/j.eururo.2018.09.040
- 217 DOELEN M. J.. et al. Overall survival using radium-223 (Ra223) in metastatic castrate-resistant prostate cancer (mCRPC) patients with and without DNA damage repair (DDR) defects. Journal of Clinical Oncology 38 (6) 121-121 2020;
- 218 MOTA J. M.. et al. Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precision Oncology 4: 355-366 2020; https://doi.org/10.1200/po.19.00346
- 219 ANTONARAKIS E. S.. et al. Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations. European urology 75 (3) 378-382 2019; https://doi.org/10.1016/j.eururo.2018.10.009
- 220 WU Y. M.. et al. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 173 (7) 1770-1782 , e14 2018; https://doi.org/10.1016/j.cell.2018.04.034
- 221 SCHWEIZER M. T.. et al. CDK12-Mutated Prostate Cancer: Clinical Outcomes With Standard Therapies and Immune Checkpoint Blockade. JCO precision oncology,; v 4: 382-392 2020; https://doi.org/10.1200/PO.19.00383
- 222 ISAACSSON y P. , et al Wnt-pathway Activating Mutations Are Associated with Resistance to First-line Abiraterone and Enzalutamide in Castration-resistant Prostate Cancer. European urology 77 (1) 14-21 2020; https://doi.org/10.1016/j.eururo.2019.05.032
- 223 MAUGHAN B. L.. et al. p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate cancer and prostatic diseases 21 (2) 260-268 2018; https://doi.org/10.1038/s41391-017-0027-4
- 224 CARREIRA S.. et al. Tumor clone dynamics in lethal prostate cancer. Science translational medicine 6 (254) 254ra125 2014; https://doi.org/10.1126/scitranslmed.3009448
- 225 FERRALDESCHI R.. et al. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. European urology 67 (4) 795-802 2015; https://doi.org/10.1016/j.eururo.2014.10.027
- 226 LORIOT Y.. et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. The New England Journal of Medicine 381 (4) 338-348 2019; https://doi.org/10.1056/nejmoa1817323
- 227 BALAR A. V.. et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. The Lancet Oncology 18 (11) 1483-1492 2017; https://doi.org/10.1016/s1470-2045(17)30616-2
- 228 BALAR A. V.. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389 , 10064 67-76 2017; https://doi.org/10.1016/s0140-6736(16)32455-2
- 229 LYAGIN I. V., ANDRIANOVA M. S., EFREMENKO E. N.. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase. Appl Microbiol Biotechnol 100 (13) 5829-5838 2016; https://doi.org/10.1007/s00253-016-7407-x
- 230 MATEO J.. et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Annals of Oncology 29 (9) 1895-1902 2018; https://doi.org/10.1093/annonc/mdy263
- 231 IYER G.. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338 (6104) 221 2012; https://doi.org/10.1126/science.1226344
- 232 CHOUDHURY N. J.. et al. Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients With ERBB Alterations. Journal of Clinical Oncology 34 (18) 2165-2171 2016; https://doi.org/10.1200/jco.2015.66.3047
- 233 GARJE R., VADDEPALLY R. K., ZAKHARIA Y.. PARP Inhibitors in Prostate and Urothelial Cancers. Front Oncol 10: 114 2020; https://doi.org/10.3389/fonc.2020.00114
- 234 HORWICH A.. et al. EAU-ESMO consensus statements on the management of advanced and variant bladder cancer-an international collaborative multi-stakeholder effort: under the auspices of the EAU and ESMO Guidelines Committeesdagger. Annals of Oncology 30 (11) 1697-1727 2019; https://doi.org/10.3389/fonc.2020.00114
- 235 HANS C. P.. et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103 (1) 275-282 2004; https://doi.org/10.1182/blood-2003-05-1545
- SWERDLOW S. H., CAMPO E., HARRIS N. L., JAFFE E. S., PILERI S. A., STEIN H., THIELE J.. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th. Lyon: IARC; 2017
- 237 SCOTT D. W.. et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. Journal of Clinical Oncology 33 (26) 2848-2856 2015; https://doi.org/10.1200/jco.2014.60.2383
- 238 JOHNSON N. A.. et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. Journal of Clinical Oncology 30 (28) 3452-3459 2012; https://doi.org/10.1200/jco.2011.41.0985
- 239 STAIGER A. M.. et al. Clinical Impact of the Cell-of-Origin Classification and the MYC/ BCL2 Dual Expresser Status in Diffuse Large B-Cell Lymphoma Treated Within Prospective Clinical Trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group. Journal of Clinical Oncology 35 (22) 2515-2526 2017; https://doi.org/10.1200/jco.2016.70.3660
- 240 YOUNES A.. et al. Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. Journal of Clinical Oncology 37 (15) 1285-1295 2019; https://doi.org/10.1200/jco.18.02403
- 241 PASQUALUCCI L., DALLA-FAVERA R.. Genetics of diffuse large B-cell lymphoma. Blood 131 (21) 2307-2319 2018; https://doi.org/10.1182/blood-2017-11-764332
- 242 SCHMITZ R.. et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. The New England Journal of Medicine 378 (15) 1396-1407 2018; https://doi.org/10.1056/nejmoa1801445
- 243 RIEDELL P. A., SMITH S. M. Double hit and double expressors in lymphoma: Definition and treatment. Cancer 124 (24) 4622-4632 2018; https://doi.org/10.1002/cncr.31646
- 244 LANDSBURG D. J.. et al. Outcomes of Patients With Double-Hit Lymphoma Who Achieve First Complete Remission. Journal of Clinical Oncology 35 (20) 2260-2267 2017; https://doi.org/10.1200/jco.2017.72.2157
- 245 OKI Y.. et al. Double hit lymphoma: the MD Anderson Cancer Center clinical experience. Br J Haematol 166 (6) 891-901 2014; https://doi.org/10.1111/bjh.12982
- 246 SCOTT D. W.. et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood 131 (18) 2060-2064 2018; https://doi.org/10.1182/blood-2017-12-820605
- 247 ZHANG L. H., KOSEK J., WANG M., HEISE C., SCHAFER P. H., CHOPRA R.. Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol 160 (4) 487-502 2013; https://doi.org/10.1111/bjh.12172
- 248 PICKARD L., PALLADINO G., OKOSUN J.. Follicular lymphoma genomics. Leuk Lymphoma 61 (10) 2313-2323 2020; https://doi.org/10.1080/10428194.2020.1762883
- 249 DÖLKEN G., ILLERHAUS G., HIRT C., MERTELSMANN R.. BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. Journal of Clinical Oncology 14 (4) 1333-1344 1996; https://doi.org/10.1200/jco.1996.14.4.1333
- 250 OKOSUN J.. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature genetics 46 (2) 176-181 2014; https://doi.org/10.1038/ng.2856
- 251 PASTORE A.. et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. The Lancet Oncology 16 (9) 1111-1122 2015; https://doi.org/10.1016/s1470-2045(15)00169-2
- 252 LOCKMER S.. et al. M7-FLIPI is not prognostic in follicular lymphoma patients with first-line rituximab chemo-free therapy. Br J Haematol 188 (2) 259-267 2020; https://doi.org/10.1111/bjh.16159
- 253 CASULO C.. et al. Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study. Journal of Clinical Oncology 33 (23) 2516-2522 2015; https://doi.org/10.1200/jco.2014.59.7534
- 254 FEDERICO M.. et al. Rituximab and the risk of transformation of follicular lymphoma: a retrospective pooled analysis. Lancet Haematol 5 (8) e359-e67 2018; https://doi.org/10.1016/s2352-3026(18)30090-5
- 255 SARKOZY C.. et al. Cause of Death in Follicular Lymphoma in the First Decade of the Rituximab Era: A Pooled Analysis of French and US Cohorts. Journal of Clinical Oncology 37 (2) 144-152 2019; https://doi.org/10.1200/jco.18.00400
- 256 CASULO C., BURACK W. R., FRIEDBERG J. W.. Transformed follicular non-Hodgkin lympho-ma. Blood 125 (1) 40-47 2015; https://doi.org/10.1182/blood-2014-04-516815
- 257 LOSSOS I. S., GASCOYNE R. D.. Transformation of follicular lymphoma. Best Pract Res Clin Haematol 24 (2) 147-163 2011; https://dx.doi.org/10.1016%2Fj.beha.2011.02.006
- 258 WEISS L. M., STRICKLER J. G., WARNKE R. A., PURTILO D. T., SKLAR J.. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129 (1) 86-91 1987; http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1899692
- 259 ALEXANDER F. E.. et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. British Journal of Cancer 82 (5) 1117-1121 2000; https://doi.org/10.1054/bjoc.1999.1049
- 260 ANSELL S. M.. Hodgkin lymphoma: A 2020 update on diagnosis, risk-stratification, and management. Am J Hematol 95 (8) 978-989 2020; https://doi.org/10.1002/ajh.25856
- 261 ROEMER M. G.. et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. Journal of Clinical Oncology 34 (23) 2690-2697 2016; https://doi.org/10.1200/jco.2016.66.4482
- 262 GREEN M. R.. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116 (17) 3268-3277 2010; https://doi.org/10.1182/blood-2010-05-282780
- 263 ROEMER M. G. M.. et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. Journal of Clinical Oncology 36 (10) 942-950 2018; https://doi.org/10.1200/jco.2017.77.3994
- 264 BORCHMANN S., ENGERT A.. The genetics of Hodgkin lymphoma: an overview and clinical implications. Curr Opin Oncol 29 (5) 307-314 2017; https://doi.org/10.1097/cco.0000000000000396
- 265 SPINA V.. et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131 (22) 2413-2425 2018; https://doi.org/10.1182/blood-2017-11-812073
- 266 COFFIN C. M., PATEL A., PERKINS S., ELENITOBA-JOHNSON K. S., PERLMAN E., GRIFFIN C. A.. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Modern Pathology 14 (6) 569-576 2001; https://doi.org/10.1038/modpathol.3880352
- 267 BINH M. B.. et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. The American Journal of Surgical Pathology 29 (10) 1340-1347 2005; https://doi.org/10.1097/01.pas.0000170343.09562.39
- 268 CASALI P. G.. et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 29 , suppl 4, iv51-iv67 2018; https://doi.org/10.1093/annonc/mdy096
- 269 JAIN S., XU R., PRIETO V. G., LEE P.. Molecular classification of soft tissue sarcomas and its clinical applications. International Journal of Clinical and Experimental Pathology 3 (4) 416-428 2010;
- 270 ITALIANO A.. et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. The Lancet Oncology 17 (4) 532-538 2016; https://doi.org/10.1016/s1470-2045(15)00583-5
- 271 ITALIANO A.. et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes, chromosomes & cancer 51 (3) 207-218 2012; https://doi.org/10.1002/gcc.20945
- 272 BRCIC I.. et al. Undifferentiated round cell sarcomas with CIC-DUX4 gene fusion: expanding the clinical spectrum. Pathology 52 (2) 236-242 2020; https://doi.org/10.1016/j.pathol.2019.09.015
- 273 GOUNDER M. M.. et al. Impact of next-generation sequencing (NGS) on diagnostic and therapeutic options in soft-tissue and bone sarcoma. Journal of Clinical Oncology 35 (15) 11001 2017;
- 274 GROISBERG R.. et al. Clinical genomic profiling to identify actionable alterations for investigational therapies in patients with diverse sarcomas. Oncotarget 8 (24) 39254-67 2017; https://doi.org/10.18632/oncotarget.16845
- 275 PESTANA R. C.. et al. Precision Oncology in Sarcomas: Divide and Conquer. JCO Precision Oncology 2019;
- 276 DICKSON M. A.. et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. Journal of Clinical Oncology 31 (16) 2024-2028 2013; https://doi.org/10.1200/jco.2012.46.5476
- 277 SHAW A. T.. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. The New England Journal of Medicine 370 (13) 1189-1197 2014; https://doi.org/10.1056/nejmc1404894
- 278 KIM D. W.. et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. The Lancet Oncology 17 (4) 452-463 2016; https://doi.org/10.1016/s1470-2045(15)00614-2
- 279 ITALIANO A.. et al. Treatment with the mTOR inhibitor temsirolimus in patients with malignant PECo-ma. Annals of Oncology 21 (5) 1135-1137 2010; https://doi.org/10.1093/annonc/mdq044
- 280 SERRANO C.. et al. Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors. BMC cancer 20 (1) 99 2020; https://doi.org/10.1186/s12885-020-6597-x
- 281 HEINRICH M. C.. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. Journal of Clinical Oncology 21 (23) 4342-4349 2003; https://doi.org/10.1200/jco.2003.04.190
- 282 MIETTINEN M., LASOTA J.. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - a review. The international Journal of Biochemistry & Cell Biology 53: 514-519 2014; https://dx.doi.org/10.1016%2Fj.biocel.2014.05.033
- 283 BOIKOS S. A.. et al. Molecular Subtypes of KIT/ PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA oncology 2 (7) 922-928 2016; https://doi.org/10.1001/jamaoncol.2016.0256
- 284 SZUCS Z.. et al. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications. Future oncology 13 (1) 93-107 2017; https://doi.org/10.2217/fon-2016-0192
- 285 CASALI P. G.. et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 29 , suppl 4, iv68-iv78 2018; https://doi.org/10.1093/annonc/mdy095
- 286 HEINRICH M. C.. et al. Clinical activity of avapritinib in = fourth-line (4L+) and PDGFRA Exon 18 gastrointestinal stromal tumors (GIST). Journal of Clinical Oncology 37 (15) 11022 2019;
- 287 BOURGEOIS J. M., KNEZEVICH S. R., MATHERS J. A., SORENSEN P. H.. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. The American journal of surgical pathology 24 (7) 937-946 2000; https://doi.org/10.1097/00000478-200007000-00005
- 288 WELLBROCK C., HURLSTONE A.. BRAF as therapeutic target in melanoma. Biochemical pharmacology 80 (5) 561-567 2010; https://doi.org/10.1016/j.bcp.2010.03.019
- 289 LONG G. V.. et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. The New England Journal of Medicine 377 (19) 181323 2017;
- 290 LONG G. V.. et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine 371 (20) 1877-1888 2014; https://doi.org/10.1056/nejmoa1406037
- 291 LONG G. V.. et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Annals of Oncology 28 (7) 1631-1639 2017; https://doi.org/10.1093/annonc/mdx176
- 292 ROBERT C.. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine 372 (1) 30-39 2015; https://doi.org/10.1056/nejmoa1412690
- 293 ROBERT C.. et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. The New England Journal of Medicine 381 (7) 626-636 2019; https://doi.org/10.1056/nejmoa1904059
- 294 LARKIN J.. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine 371 (20) 1867-1876 2014; https://doi.org/10.1056/nejmoa1408868
- 295 DUMMER R.. et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 19 (10) 1315-1327 2018; https://doi.org/10.1016/s1470-2045(18)30497-2
- 296 DUMMER R.. et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 18 (4) 435-445 2017; https://doi.org/10.1016/s1470-2045(17)30180-8
- 297 WYMAN K.. et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer 106 (9) 2005-2011 2006; https://doi.org/10.1002/cncr.21834
- 298 LEZCANO C., SHOUSHTARI A. N., ARIYAN C., HOLLMANN T. J., BUSAM K. J.. Primary and Metastatic Melanoma With NTRK Fusions. The American Journal of Surgical Pathology 42 (8) 1052-1058 2018; https://doi.org/10.1097/pas.0000000000001070
- 299 LOUIS D. N.. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131 (6) 803-820 2016; https://doi.org/10.1007/s00401-016-1545-1
- 300 ECKEL-PASSOW J. E.. et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New England Journal of Medicine 372 (26) 2499-2508 2015; https://doi.org/10.1056/nejmoa1407279
- 301 VAN DEN BENT M. J., MELLINGHOFF I. K., BINDRA R. S.. Gray Areas in the Gray Matter: IDH1/2 Mutations in Glioma. American Society of Clinical Oncology Educational Book 40: 1-8 2020;
- 302 CAIRNCROSS G.. et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. Journal of Clini-cal Oncology 31 (3) 337-343 2013; https://doi.org/10.1200/jco.2012.43.2674
- 303 KRISTENSEN B. W., PRIESTERBACH-ACKLEY L. P., PETERSEN J. K., WESSELING P.. Molecular pathology of tumors of the central nervous system. Annals of Oncology 30 (8) 1265-1278 2019; https://doi.org/10.1093/annonc/mdz164
- 304 ICHIMURA K., NARITA Y., HAWKINS C. E. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol 129 (6) 789-808 2015; https://doi.org/10.1007/s00401-015-1439-7
- 305 MOLINARO A. M., TAYLOR J. W., WIENCKE J. K., WRENSCH M. R.. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15 (7) 405-417 2019; https://doi.org/10.1038/s41582-019-0220-2
- 306 LOUIS D. N.. et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30 (4) 844-856 2020; https://doi.org/10.1111/bpa.12832
- 307 SCHINDLER G.. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121 (3) 397-405 2011; https://doi.org/10.1007/s00401-011-0802-6
- 308 VAISHNAVI A., LE A. T., DOEBELE R. C.. TRKing down an old oncogene in a new era of targeted therapy. Cancer discovery 5 (1) 25-34 2015; https://doi.org/10.1158/2159-8290.cd-14-0765
- 309 HONG D. S.. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. The Lancet Oncology 21 (4) 531-540 2020; https://doi.org/10.1016/s1470-2045(19)30856-3
- 310 DEMETRI G. D.. et al. Efficacy and safety of entrectinib in patients with NTRK fusion-positive (NTRK-fp) Tumors: Pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. . Proceedings of ESMO 2018 Congress 2018 https://doiorg/101093/annonc/mdy424017
- 311 JONES S.. et al. Personalized genomic analyses for cancer mutation discovery and interpretation. Science Translational Medicine 7 (283) 283ra53 2015; https://doi.org/10.1126/scitranslmed.aaa7161
- 312 IZUMCHENKO E.. et al. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nature communications 6: 8258 2015; https://doi.org/10.1038/ncomms9258
- 313 CHENG D. T.. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J Mol Diagn 17 (3) 251-264 2015; https://doi.org/10.1016/j.jmoldx.2014.12.006
- 314 SINGH R. R.. et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn 15 (5) 607-622 2013; https://doi.org/10.1016/j.jmoldx.2013.05.003
- 315 MANDELKER D.. et al. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. Jama 318 (9) 825-835 2017; https://doi.org/10.1001/jama.2017.11137
- 316 AZIZ N.. et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Archives of Pathology & Laboratory Medicine 139 (4) 481-493 2015; https://doi.org/10.5858/arpa.2014-0250-cp
- 317 YOHE S. L.. et al. Standards for Clinical Grade Genomic Databases. Archives of Pathology & Laboratory Medicine 139 (11) 1400-1412 2015; https://doi.org/10.5858/arpa.2014-0568-cp
- 318 EL-DEIRY W. S.. et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin 69 (4) 305-343 2019; https://doi.org/10.3322/caac.21560
- 319 JENNINGS L. J.. et al. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 19 (3) 341-365 2017; https://doi.org/10.1016/j.jmoldx.2017.01.011
- 320 WEISS G. J.. et al. Evaluation and comparison of two commercially available targeted next-generation sequencing platforms to assist oncology decision making. Onco Targets Ther 8: 959-967 2015; https://dx.doi.org/10.2147%2FOTT.S81995
- 321 SQUILLACE R. M., FRAMPTON G. M., STEPHENS P. J., ROSS J. S., MILLER V. A. Comparing two assays for clinical genomic profiling: the devil is in the data. Onco Targets Ther 8: 2237-2242 2015; https://doi.org/10.2147/ott.s88908
- 322 MISYURA M.. et al. Comparison of Next-Generation Sequencing Panels and Platforms for Detection and Verification of Somatic Tumor Variants for Clinical Diagnostics. J Mol Diagn 18 (6) 842-850 2016; https://doi.org/10.1016/j.jmoldx.2016.06.004
- 323 WOOD D. E.. et al. A machine learning approach for somatic mutation discovery. Science Translational Medicine 10 (457) 2018;
- 324 HOSKINSON D. C., DUBUC A. M., MASON-SUARES H.. The current state of clinical interpretation of sequence variants. Curr Opin Genet Dev 42: 33-39 2017; https://doi.org/10.1016/j.gde.2017.01.001
- 325 YORCZYK A., ROBINSON L. S., ROSS T. S.. Use of panel tests in place of single gene tests in the cancer genetics clinic. Clin Genet 88 (3) 278-282 2015; https://doi.org/10.1111/cge.12488
- 326 AMENDOLA L. M.. et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res 25 (3) 305-315 2015; https://doi.org/10.1101/gr.183483.114
- 327 SHAH P. D., NATHANSON K. L.. Application of Panel-Based Tests for Inherited Risk of Cancer. Annu Rev Genomics Hum Genet 18: 20127 2017; https://doi.org/10.1146/annurev-genom-091416-035305
- 328 RICHARDS S.. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17 (5) 405-424 2015; https://doi.org/10.1038/gim.2015.30
- 329 CHAKRAVARTY D.. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncology 2017;
- 330 GRIFFITH M.. et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nature genetics 49 (2) 170-174 2017; https://doi.org/10.1038/ng.3774
- 331 CERAMI E.. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery 2 (5) 401-404 2012; https://doi.org/10.1158/2159-8290.cd-12-0095
- 332 GAO J.. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6 (269) l1 2013; https://doi.org/10.1126/scisignal.2004088