Subscribe to RSS
DOI: 10.5935/2526-8732.20210025
Colorectal cancer biomarkers and their impact on the clinical practice
Biomarcadores de câncer colorretal e seu impacto na prática clínica Financial support: None to declare.ABSTRACT
Colorectal cancer (CRC) holds third place in the global ranking of malignancies worldwide. Patients with CRC commonly show distinct outcomes and treatment responses due to their biological features and tumoral biomarkers. This review explores the repertoire of molecular biomarkers in CRC, comprised of chromosomal aberrations and genomic instability and genetic mutations. We also underline the stratification of CRC patients into four clinically defined subsets: CMS1 (MSI, immune); CMS2 (canonical); CMS3 (metabolic); and CMS4 (mesenchymal), as well as novel techniques to be applied very soon in the field, such as cell-free DNA, tumor mutational burden, and microbiome profiling.
RESUMO
O câncer colorretal (CCR) ocupa o terceiro lugar no ranking mundial de doenças malignas. Pacientes com CCR geralmente apresentam resultados e respostas ao tratamento distintos devido às suas características biológicas e biomarcadores tumorais. Esta revisão explora o repertório de biomarcadores moleculares no CCR, composto por aberrações cromossômicas e instabilidade genômica e mutações genéticas. Também destacamos a estratificação dos pacientes com CCR em quatro subconjuntos clinicamente definidos: CMS1 (MSI, imune); CMS2 (canônico); CMS3 (metabólico); e CMS4 (mesenquimal), bem como novas técnicas a serem aplicadas muito em breve na área, como DNA livre de células, carga mutacional tumoral e perfil do microbioma.
Keywords:
Biomarcadores - Genômica - Prognóstico - Agentes antineoplásicos - Neoplasias colorretais.Descritores:
Biomarcadores - Genômica - Prognóstico - Agentes antineoplásicos - Neoplasias colorretais.FUNDING INFORMATION
This work was supported by Instituto COI.
Conflict of Interests
The authors declare no conflict of interest relevant to this manuscript.
AUTHOR CONTRIBUTIONS
Conceptualization: J.C, A.P.V, L.H.A and F.M.A.C.V. Writing-original draft preparation: J.C, A.P.V and F.M.A.C.V.
Writing-review and editing: J.C, A.P.V, K.B.A, L.H.A and F.M.A.C.V.
All authors have read and agreed to the final version of the manuscript.
Publication History
Received: 10 March 2021
Accepted: 25 June 2021
Article published online:
16 September 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
James Crespo, Ana Paula Victorino, Kelly Araujo, Luiz Henrique Araujo, Fernando Meton de Alencar Camara Vieira. Colorectal cancer biomarkers and their impact on the clinical practice. Brazilian Journal of Oncology 2021; 17: e-20210025.
DOI: 10.5935/2526-8732.20210025
-
REFERENCES
- 1 International Agency for Research on Cancer (IARC); World Health Organization (WHO). Global cancer observatory (GCO) [Internet]. Geneva: IARC/WHO;; 2020. ; [access in 2020 Sep 22]. Available from: https://gco.iarc.fr
- 2 National Cancer Institute (NIH). Cancer stat facts: colorectal cancer [Internet]. Bethesda: NIH;; 2020. ;[access in 2020 May 17]. Available from: https://seer.cancer.gov/statfacts/html/colorect.html
- 3 Kocarnik JM, Shiovitz S, Phipps AI. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep (Oxf) 2015; 3 (04) 269-276 https://doi.org/10.1093/gastro/gov046
- 4 Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A. et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res 2018; Mar; 24 (05) 1062-1072 https://doi.org/10.1158/1078-0432.CCR-17-2484
- 5 Wong R. Proximal tumors are associated with greater mortality in colon cancer. J Gen Intern Med 2010; Jul; 25: 1157-1163 https://doi.org/10.1007/s11606-010-1460-4
- 6 Missiaglia E, Jacobs B, D'Ario G, Di Narzo AF, Soneson C, Budinska E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol 2014; Oct; 25 (10) 1995-2001 https://doi.org/10.1093/annonc/mdu275
- 7 Wang CB, Shahjehan F, Merchea A, Li Z, BekaiiSaab TS, Grothey A. et al. Impact of tumor location and variables associated with overall survival in patients with colorectal cancer: a Mayo clinic colon and rectal cancer registry study. Front Oncol 2019; 9: 76 https://doi.org/10.3389/fonc.2019.00076
- 8 Wang B, Yang J, Li S, Lv M, Chen Z, Li E. et al. Tumor location as a novel high risk parameter for stage II colorectal cancers. PLoS One 2017; 12 (06) e0179910 https://doi.org/10.1371/journal.pone.0179910
- 9 Warschkow R, Sulz MC, Marti L, Tarantino I, Schmied BM, Cerny T. et al. Better survival in right-sided versus left-sided stage I - III colon cancer patients. BMC Cancer 2016; Jul; 16: 554 https://doi.org/10.1186/s12885-016-2412-0
- 10 Yamashita S, Brudvik KW, Kopetz SE, Maru D, Clarke CN, Passot G. et al. Embryonic origin of primary colon cancer predicts pathologic response and survival in patients undergoing resection for colon cancer liver metastases. Ann Surg 2018; Mar; 267 (03) 514-520 https://doi.org/10.1097/SLA.0000000000002087
- 11 Sanchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordonez R, Medina JA. et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel) 2020; 12 (06) 1406 https://doi.org/10.3390/cancers12061406
- 12 Dahmus JD, Kotler DL, Kastenberg DM, Kistler CA. The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J Gastrointest Oncol 2018; 9 (04) 769-777 https://doi.org/10.21037/jgo.2018.04.07
- 13 Verhulst J, Ferdinande L, Demetter P, Ceelen W. Mucinous subtype as prognostic factor in colorectal cancer: a systematic review and meta-analysis. J Clin Pathol 2012; 65 (05) 381-388 https://doi.org/10.1136/jclinpath-2011-200340
- 14 Hugen N, Van de Velde CJH, Wilt JHW, Nagtegaal ID. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol 2014; 25: 651-657 https://doi.org/10.1093/annonc/mdt591
- 15 Maisano R, Azzarello D, Maisano M, Mafodda A, Bottari M, Egitto G. et al. Mucinous histology of colon cancer predicts poor outcomes with FOLFOX regimen in metastatic colon cancer. J Chemother 2012; Aug; 24 (04) 212-216
- 16 McCawley N, Clancy C, O'Neill BD, Deasy J, McNamara DA, Burke JP. Mucinous rectal adenocarcinoma is associated with a poor response to neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. Dis Colon Rectum 2016; Dec; 59 (12) 1200-1208 https://doi.org/10.1097/DCR.0000000000000635
- 17 Thota R, Fang X, Subbiah S. Clinicopathological features and survival outcomes of primary signet ring cell and mucinous adenocarcinoma of colon: retrospective analysis of VACCR database. J Gastrointest Oncol 2014; Feb; 5 (01) 18-24
- 18 Yun SO, Cho YB, Lee WY, Kim HC, Yun SH, Park YA. et al. Clinical significance of signet-ring-cell colorectal cancer as a prognostic factor. Ann Coloproctol 2017; Dec; 33 (06) 232-238 https://doi.org/10.3393/ac.2017.33.6.232
- 19 Gao Y, Wang J, Zhou Y, Sheng S, Qian SY, Huo X. Evaluation of Serum CEA, CA19- 9, CA72-4, CA125 and ferritin as diagnostic markers and factors of clinical parameters for colorectal cancer. Sci Rep 2018; Feb; 8: 2732 https://doi.org/10.1038/s41598-018-21048-y
- 20 Huang CJ, Jiang JK, Chang SC, Lin JK, Yang SH. Serum CA125 concentration as a predictor of peritoneal dissemination of colorectal cancer in men and women. Medicine (Baltimore) 2016; 95 (47) e5177 https://doi.org/10.1097/MD.0000000000005177
- 21 Brouwer NPM, Bos A, Lemmens V, Tanis PJ, Hugen N, Nagtegaal ID. et al. An overview of 25 years of incidence, treatment and outcome of colorectal cancer patients. Int J Cancer 2018; Aug; 143 (11) 2758-2766 https://doi.org/10.1002/ijc.31785
- 22 Messersmith WA. NCCN guidelines updates: management of metastatic colorectal cancer. J Natl Compr Canc Netw 2019; May; 17 (05) 599-601
- 23 Brown KGM, Solomon MJ, Mahon K, O'Shan nassy S. Management of colorectal cancer. BMJ 2019; 366: l4561 https://doi.org/10.1136/bmj.l4561
- 24 Vogel A, Hofheinz RD, Kubicka S, Arnold D. Treatment decisions in metastatic colorectal cancer - Beyond first and second line combination therapies. Cancer Treat Rev 2017; Sep; 59: 54-60 https://doi.org/10.1016/j.ctrv.2017.04.007
- 25 Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5: 22 https://doi.org/10.1038/s41392-020-0116-z
- 26 Fearon ER, Vogelstein B. A. genetic model for colorectal tumorigenesis. Cell 1990; Jun; 61 (05) 759-767 https://doi.org/10.1016/0092-8674(90)90186-i
- 27 Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; Oct; 135 (04) 1079-1099
- 28 Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 2008; 57 (07) 941-950 https://doi.org/10.1136/gut.2007.135004
- 29 Hoevenaar WHM, Janssen A, Quirindongo AI, Ma H, Klaasen SJ, Teixeira A. et al. Degree and site of chromosomal instability define its oncogenic potential. Nat Commun 2020; 11: 1501 https://doi.org/10.1038/s41467-020-15279-9
- 30 Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D. Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers (Basel) 2019; 11 (10) 1567 https://doi.org/10.3390/cancers11101567
- 31 Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N. et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007; 25 (07) 767-772 https://doi.org/10.1200/JCO.2006.05.8172
- 32 Halvarsson B, Anderson H, Domanska K, Lindmark G, Nilbert M. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers. Am J Clin Pathol 2008; 129 (02) 238-244 https://doi.org/10.1309/0PP5GDRTXUDVKAWJ
- 33 Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998; Aug; 58 (15) 3455-3460
- 34 Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW. et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 2014; Aug; 147 (02) 502-526
- 35 Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; Jul; 349: 247-257 https://doi.org/10.1056/NEJMoa022289
- 36 Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010; 28 (20) 3219-3226 https://doi.org/10.1200/JCO.2009.27.1825
- 37 Cohen R, Taieb J, Fiskum J, Yothers G, Goldberg R, Yoshino T. et al. Microsatellite instability in patients with stage III colon cancer receiving fluoropyrimidine with or without oxaliplatin: an ACCENT pooled analysis of 12 adjuvant trials. J Clin Oncol 2021; 39 (06) 642-651 https://doi.org/10.1200/JCO.20.01600
- 38 Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D. et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010; 28 (03) 466-474 https://doi.org/10.1200/JCO.2009.23.3452
- 39 Koopman M, Kortman GA, Mekenkamp L, Ligtenberg MJ, Hoogerbrugge N, Antonini NF. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009; 100: 266-273 https://doi.org/10.1038/sj.bjc.6604867
- 40 Sinicrope FA, Mahoney MR, Smyrk TC, Thibodeau SN, Warren RS, Bertagnolli MM. et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol 2013; 31 (29) 3664-3672 https://doi.org/10.1200/JCO.2013.48.9591
- 41 Webber EM, Kauffman TL, O'Connor E, Goddard KA. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FUbased chemotherapy. BMC Cancer 2015; 15: 156 https://doi.org/10.1186/s12885-015-1093-4
- 42 Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 2008; 10 (04) 293-300
- 43 B, Lagorce-Pages C. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313 (5795) 1960-1964 https://doi.org/10.1126/science.1129139
- 44 Li Y, Liang L, Dai W, Cai G, Xu Y, Li X. et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer 2016; Aug; 15: 55 https://doi.org/10.1186/s12943-016-0539-x
- 45 Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenblei kner EM, Taube JM. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015; 5: 43-51 https://doi.org/10.1158/2159-8290.CD-14-0863
- 46 Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; Jun; 372: 2509-2520 https://doi.org/10.1056/NEJMoa1500596
- 47 Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; Sep; 18 (09) 1182-1191 https://doi.org/10.1016/S1470-2045(17)30422-9
- 48 André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 2020; 383: 2207-2218 https://doi.org/10.1056/NEJMoa2017699
- 49 Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M. et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; Sep; 319: 525-532 https://doi.org/10.1056/NEJM198809013190901
- 50 Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 2009; 9: 489-499 https://doi.org/10.1038/nrc2645
- 51 Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018; 378: 731-739 https://doi.org/10.1056/NEJMoa1714448
- 52 Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020; Feb; 21 (02) 271-282 https://doi.org/10.1016/S1470-2045(19)30691-6
- 53 Pietrantonio F, Di Nicolantonio F, Schrock AB, Lee J, Tejpar S, Sartore-Bianchi A. et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Natl Cancer Inst 2017; 109: djx089 https://doi.org/10.1093/jnci/djx089
- 54 Pagani F, Randon G, Guarini V, Raimondi A, Prisciandaro M, Lobefaro R. et al. The landscape of actionable gene fusions in colorectal cancer. Int J Mol Sci 2019; 20
- 55 Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009; Oct; 101 (19) 1308-1324 https://doi.org/10.1093/jnci/djp280
- 56 Danielsen SA, Lind GE, Bjornslett M, Meling GI, Rognum TO, Heim S. et al. Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instability- and TP53 mutation-status. Hum Mutat 2008; 29 (11) E25262 https://doi.org/10.1002/humu.20860
- 57 Razis E, Briasoulis E, Vrettou E, Skarlos DV, Papamichael D, Kostopoulos I. et al. Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study. BMC Cancer 2008; Aug; 8: 234 https://doi.org/10.1186/1471-2407-8-234
- 58 Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 2009; 69 (05) 1851-1857 https://doi.org/10.1158/0008-5472.CAN-08-2466
- 59 Ogino S, Liao X, Imamura Y, Yamauchi M, McCleary NJ, Ng K. et al. Predictive and prognostic analysis of PIK3CA mutation in stage III colon cancer intergroup trial. J Natl Cancer Inst 2013; 105 (23) 178998 https://doi.org/10.1093/jnci/djt298
- 60 Price TJ, Hardingham JE, Lee CK, Townsend AR, Wrin JW, Wilson K. et al. Prognostic impact and the relevance of PTEN copy number alterations in patients with advanced colorectal cancer (CRC) receiving bevacizumab. Cancer Med 2013; Mar; 2 (03) 277-285 https://doi.org/10.1002/cam4.75
- 61 Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001; 93: 1062-1074 https://doi.org/10.1093/jnci/93.14.1062
- 62 Grothey A, Sargent D. Overall survival of patients with advanced colorectal cancer correlates with availability of fluorouracil, irinotecan, and oxaliplatin regardless of whether doublet or single-agent therapy is used first line. J Clin Oncol 2005; 23 (36) 94412 https://doi.org/10.1200/JCO.2005.04.4792
- 63 Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; Oct; 359: 1757-1765 https://doi.org/10.1056/NEJMoa0804385
- 64 Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M. et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; Sep; 369: 1023-1034 https://doi.org/10.1056/NEJMoa1305275
- 65 Ferreira CG, Aran V, Zalcberg-Renault I, Victorino AP, Salem JH, Bonamino MH. et al. KRAS mutations: variable incidences in a Brazilian cohort of 8,234 metastatic colorectal cancer patients. BMC Gastroenterol 2014; Apr; 14: 73 https://doi.org/10.1186/1471-230X-14-73
- 66 Pereira AAL, Fernandes GDS, Braga GTP, Marchetti KR, Mascarenhas CDC, Gumz B. et al. Differences in pathology and mutation status among colorectal cancer patients younger than, older than, and of screening age. Clin Colorectal Cancer 2020; 19 (04) e264-e71 https://doi.org/10.1016/j.clcc.2020.06.004
- 67 Heinemann V, Von Weikersthal LF, Decker T, Ki ani A, Vehling-Kaiser U, Al-Batran SE. et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15 (10) 1065-1075 https://doi.org/10.1016/S1470-2045(14)70330-4
- 68 Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI. et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med 2020; Sep; 383: 1207-1217 https://doi.org/10.1056/NEJMoa1917239
- 69 Johnson ML, Ou SHI, Barve M, Rybkin II, Papadopoulos KP, Leal TA. et al. KRYSTAL-1: activity and safety of adagrasib (MRTX849) in patients with colorectal cancer (CRC) and other solid tumors harboring a KRAS G12C mutation. Eur J Cancer 2020; 138 (Suppl 2): S2 https://doi.org/10.1016/S0959-8049(20)31077-7
- 70 Pereira AA, Rego JF, Morris V, Overman MJ, Eng C, Garrett CR. et al. Association between KRAS mutation and lung metastasis in advanced colorectal cancer. Br J Cancer 2015; 112: 424-428 https://doi.org/10.1038/bjc.2014.619
- 71 Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361: 98-99 https://doi.org/10.1056/NEJMc0904160
- 72 Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY. et al. (Non-V600) BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol 2017; 35 (23) 2624-2630 https://doi.org/10.1200/JCO.2016.71.4394
- 73 Farina-Sarasqueta A, Van Lijnschoten G, Moerland E, Creemers GJ, Lemmens V, Rutten HJT. et al. The BRAF V600E mutation is an independent prognostic factor for survival in stage II and stage III colon cancer patients. Ann Oncol 2010; Dec; 21 (12) 2396-2402
- 74 Gray RG, Quirke P, Handley K, Lopatin M, Magill L, Baehner FL. et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol 2011; 29 (35) 4611-4619 https://doi.org/10.1200/JCO.2010.32.8732
- 75 Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as firstline treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011; 29 (15) 2011-2019 https://doi.org/10.1200/JCO.2010.33.5091
- 76 Price TJ, Hardingham JE, Lee CK, Weickhardt A, Townsend AR, Wrin JW. et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 2011; 29 (19) 2675-2682 https://doi.org/10.1200/JCO.2010.34.5520
- 77 De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11 (08) 753-762 https://doi.org/10.1016/S1470-2045(10)70130-3
- 78 Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med 2019; Oct; 381: 1632-1643 https://doi.org/10.1056/NEJMoa1908075
- 79 Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; Jun; 350: 2335-2342 https://doi.org/10.1056/NEJMoa032691
- 80 Hurwitz HI, Tebbutt NC, Kabbinavar F, Giantonio BJ, Guan ZZ, Mitchell L. et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013; Jul; 18 (09) 100412 https://doi.org/10.1634/theoncologist.2013-0107
- 81 Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, Mitchell EP, Alberts SR. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. J Clin Oncol 2007; 25 (12) 1539-1544 https://doi.org/10.1200/jco.2006.09.6305
- 82 Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 2015; May; 16 (05) 499-508 https://doi.org/10.1016/S1470-2045(15)70127-0
- 83 Cutsem EV, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase iii randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012; 30 (28) 3499-3506 https://doi.org/10.1200/jco.2012.42.8201
- 84 Isaksson-Mettavainio M, Palmqvist R, Dahlin AM, Van Guelpen B, Rutegard J, Oberg A. et al. High SMAD4 levels appear in microsatellite instability and hypermethylated colon cancers, and indicate a better prognosis. Int J Cancer 2012; Sep; 131 (04) 779-788 https://doi.org/10.1002/ijc.26473
- 85 Kim JH, Kang GH. Molecular and prognos tic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol 2014; Apr; 20 (15) 4230-4243 https://doi.org/10.3748/wjg.v20.i15.4230
- 86 Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin R. et al. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep (Oxf) 2020; 8 (03) 179-191 https://doi.org/10.1093/gastro/goaa026
- 87 Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, Bergamo F. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016; 17 (06) 738-746 https://doi.org/10.1016/S1470-2045(16)00150-9
- 88 Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013; 3 (06) 65873 https://doi.org/10.1158/2159-8290.CD-12-0558
- 89 Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C. et al. Therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018; 36 (06) 536-542 https://doi.org/10.1200/JCO.2017.75.3780
- 90 Raghav K, Loree JM, Morris JS, Overman MJ, Yu R, Meric-Bernstam F. et al. Validation of HER2 amplification as a predictive biomarker for anti-epidermal growth factor receptor antibody therapy in metastatic colorectal cancer. JCO Precision Oncol 2019; 226: 1-13 https://doi.org/10.1200/PO.18.00226
- 91 Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, VanderWalde A. et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019; 20 (04) 518-530 https://doi.org/10.1016/S1470-2045(18)30904-5
- 92 Siena S, Bartolomeo MD, Raghav KPS, Masuishi T, Loupakis F, Kawakami H. et al. A phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): DESTINY-CRC01. J Clin Oncol 2020; 38 (15) Suppl 1 4000 https://doi.org/10.1200/JCO.2020.38.15_suppl.4000
- 93 Xu Y, Huang Z, Li C, Zhu C, Zhang Y, Guo T. et al. Comparison of molecular, clinicopathological, and pedigree differences between lynch-like and lynch syndromes. Front Genet 2020; 11: 991 https://doi.org/10.3389/fgene.2020.00991
- 94 Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L. et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 2016; 1 (03) 207-216 https://doi.org/10.1016/S2468-1253(16)30014-0
- 95 Mo S, Ma X, Li Y, Zhang L, Hou T, Han-Zhang H. et al. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage II colorectal cancer. J Immunother Cancer 2020; 8 (02) e000881 https://doi.org/10.1136/jitc-2020-000881
- 96 Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. ASCO Educ 2016; 36: 298-308 https://doi.org/10.1200/edbk_156572
- 97 Feng D, Chen Z, He X, Huang S, Zhang Z. Loss of tumor intrinsic PD-L1 confers resistance to drug-induced apoptosis in human colon cancer. Neoplasma 2020; 68 (01) 144-153 https://doi.org/10.4149/neo_2020_200531N589
- 98 Wang S, Yuan B, Wang Y, Li M, Liu X, Cao J. et al. Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a meta-analysis. Int J Colorectal Dis 2020; Sep; 36: 117-130 https://doi.org/10.1007/s00384-020-03734-4
- 99 Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2017; 357 (6348) eaal2380 https://doi.org/10.1126/science.aal2380
- 100 Guinney J, Dienstmann R, Wang X, Reynies A, Schlicker A, Soneson C. et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; Oct; 21: 1350-1356 https://doi.org/10.1038/nm.3967
- 101 Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 1999; Jun; 154 (06) 1805-1813
- 102 Fessler E, Medema JP. Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Trends Cancer 2016; Sep; 2 (09) 505-508 https://doi.org/10.1016/j.trecan.2016.07.008
- 103 Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 2009; 58 (01) 90-96 https://doi.org/10.1136/gut.2008.155473
- 104 Stintzing S, Wirapati P, Lenz HJ, Neureiter D, Von Weikersthal LF, Decker T. et al. Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann Oncol 2019; Nov; 30 (11) 1796-1803
- 105 Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, Rooij LP. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 2013; Apr; 19: 614-618 https://doi.org/10.1038/nm.3174
- 106 Alborelli I, Generali D, Jermann P, Cappelletti MR, Ferrero G, Scaggiante B. et al. Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study. Cell Death Dis 2019; Jul; 10: 534 https://doi.org/10.1038/s41419-019-1770-3
- 107 Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017; 7 (12) 1394-1403 https://doi.org/10.1158/2159-8290.CD-17-0716
- 108 Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016; 8 (346) 346-392 https://doi.org/10.1126/scitranslmed.aaf6219
- 109 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9 (403) eaan2415 https://doi.org/10.1126/scitranslmed.aan2415
- 110 Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L. et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett 2008; 263 (02) 170-181 https://doi.org/10.1016/j.canlet.2008.03.021
- 111 Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014; Mar; 20: 4305 https://doi.org/10.1038/nm.3511
- 112 Yang YC, Wang D, Jin L, Yao HW, Zhang JH, Wang J. et al. Circulating tumor DNA detectable in early- and late-stage colorectal cancer patients. Biosci Rep 2018; 38 (04) BSR20180322 https://doi.org/10.1042/BSR20180322
- 113 Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6 (224) 224 https://doi.org/10.1126/scitranslmed.3007094
- 114 Clifton K, Rich TA, Parseghian C, Raymond VM, Dasari A, Pereira AAL. et al. Identification of actionable fusions as an anti-EGFR resistance mechanism using a circulating tumor DNA assay. JCO Precision Oncol 2019; 3
- 115 Reinert T, Henriksen TV, Christensen E, Sharma S, Salari R, Sethi H. et al. Analysis of plasma cellfree DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5 (08) 1124-1131 https://doi.org/10.1001/jamaoncol.2019.0528
- 116 Parseghian CM, Loree JM, Morris VK, Liu X, Clifton KK, Napolitano S. et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann Oncol 2019; Feb; 30 (02) 243-249
- 117 Dasari A, Morris VK, Allegra CJ, Atreya C, Benson AB, Boland P. et al. ctDNA applications and integration in colorectal cancer: an NCI Colon and Rectal-Anal Task Forces whitepaper. Nat Rev Clin Oncol 2020; 17: 757-770 https://doi.org/10.1038/s41571-020-0392-0
- 118 Dromain C, Beigelman C, Pozzessere C, Duran R, Digklia A. Imaging of tumour response to immunotherapy. Eur Radiol Exp 2020; Jan; 4: 2 https://doi.org/10.1186/s41747-019-0134-1
- 119 Fabrizio DA, George Junior TJ, Dunne RF, Frampton G, Sun J, Gowen K. et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 2018; Aug; 9 (04) 610-617 https://doi.org/10.21037/jgo.2018.05.06
- 120 Goodman AM, Sokol ES, Frampton GM, Lippman SM, Kurzrock R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 2019; 7 (10) 1570-1573 https://doi.org/10.1158/2326-6066.CIR-19-0149
- 121 Li R, Han D, Shi J, Han Y, Tan P, Zhang R. et al. Choosing tumor mutational burden wisely for immunotherapy: a hard road to explore. Biochim Biophys Acta Rev Cancer 2020; 1874 (02) 188420 https://doi.org/10.1016/j.bbcan.2020.188420
- 122 Eso Y, Seno H. Current status of treatment with immune checkpoint inhibitors for gastrointestinal, hepatobiliary, and pancreatic cancers. Therap Adv Gastroenterol 2020; 13: 1756284820948773 https://doi.org/10.1177/1756284820948773
- 123 Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020; 21 (10) 1353-1365 https://doi.org/10.1016/S1470-2045(20)30445-9
- 124 Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT. et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 2020; Mar; 6 (03) 192-204 https://doi.org/10.1016/j.trecan.2020.01.004
- 125 Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359 (6371) 97-103 https://doi.org/10.1126/science.aan4236
- 126 Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359 (6371) 104-108 https://doi.org/10.1126/science.aao3290
- 127 Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014; Mar; 33: 1381-1390 https://doi.org/10.1007/s10096-014-2081-3
- 128 Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65 (12) 1973-1980 https://doi.org/10.1136/gutjnl-2015-310101
- 129 Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012; 7 (06) e39743 https://doi.org/10.1371/journal.pone.0039743
- 130 Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 2015; Jun; 21 (06) 891-897 https://doi.org/10.1016/j.cmet.2015.04.011
- 131 Pleguezuelos-Manzano C, Puschhof J, Huber RA, Van Hoeck A, Wood HM, Nomburg J. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020; Feb; 580: 269-273 https://doi.org/10.1038/s41586-020-2080-8
- 132 Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019; Oct; 574: 532-537 https://doi.org/10.1038/s41586-019-1672-7