CC BY 4.0 · Brazilian Journal of Oncology 2024; 20: e-20240456
DOI: 10.5935/2526-8732.20240456
Original Article
Pediatric Oncology

Immunohistochemistry and next-generation sequencing for NTRK fusion detection in differentiated thyroid cancer of children, adolescents and young adults

1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
,
1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
,
1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
,
1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
,
1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
,
2   Federal University of Paraíba, Lauro Wanderley University Hospital, João Pessoa - Paraíba, Brazil
,
2   Federal University of Paraíba, Lauro Wanderley University Hospital, João Pessoa - Paraíba, Brazil
,
3   Federal University of Rio de Janeiro, The Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro - Rio de Janeiro, Brazil
,
4   Pardini Group, Department of Molecular Genetics, Vespasiano - Minas Gerais, Brazil
,
5   State University of Feira de Santana, Department of Health, Feira de Santana - Bahia, Brazil
,
5   State University of Feira de Santana, Department of Health, Feira de Santana - Bahia, Brazil
,
1   Federal University of Bahia, Department of Biorregulation, Health & Sciences Institute, Salvador - Bahia, Brazil
› Author Affiliations
Financial support: none to declare.

ABSTRACT

Introduction: Pan-TRK immunohistochemistry staining can assess the protein expression from NTRK gene fusions. A little is known about its utility in differentiated thyroid cancer samples from children, adolescents, and young adults patients. Objective:Investigate pan-TRKimmunohistochemistry sensitivity and specificity in differentiated thyroid cancer samples from children, adolescents, and young adults patients.

Methods: Tumor samples obtained from 79 children, adolescents, and young adults patients (age <21 years) diagnosed with differentiated thyroid cancer between January, 2010 and January, 2021 were retrospectively recruited from four health centers from state of Bahia e Paraíba, Brazil. NTRK gene fusion testing of all archival FFPE tumor samples: pan-TRK immunohistochemistry staining for TRKA, TRKB and TRKC protein expression were performed and then analyzed with RNA-based nextgeneration sequencing assay to confirm immunohistochemistry pan-TRK result and elucidate fusion partner.

Results: Pan-TRK immunohistochemistry: 3 of 79 cases had positive pan-TRK expression: next-generation sequencing; 4 were identified with NTRK gene fusion, pan-TRK immunohistochemistry was negative in all 4 NTRK next-generation sequencing-positive cases. 25 of 79 NTRK next-generation sequencing-negative control cases had concordant negative pan-TRK immunohistochemistry results. Therefore, our rate of false positive pan-TRK immunohistochemistry results was 3/25 (12%). The overall results for pan-TRK immunohistochemistry in our cohort of next-generation sequencing-negative cases was: (i) sensitivity (0%), (ii) specificity (96%), (iii) positive predictive value (94.7%), (iv) negative predictive value (91%).

Conclusion: Pan-TRK immunohistochemistry was not a tissue-efficient screen for NTRK fusions in differentiated thyroid cancer from children, adolescents, and young adults patients. This is the largest cohort of from children, adolescents, and young adults differentiated thyroid cancer cases stained with pan-TRK immunohistochemistry, and it is the first to detail the sensitivity and specificity of pan-TRK immunohistochemistry regarding the data obtained by targeted RNA-based next-generation sequencing panel in differentiated thyroid cancer.

RESUMO

Introdução: A coloração imuno-histoquímica Pan-TRK pode avaliar a expressão proteica de fusões de genes NTRK. Pouco se sabe sobre sua utilidade em amostras diferenciadas de câncer de tireoide de crianças, adolescentes e adultos jovens. Objetivo: Investigar a sensibilidade e especificidade da imuno-histoquímica pan-TRK em amostras diferenciadas de câncer de tireoide de pacientes crianças, adolescentes e adultos jovens.

Métodos: Amostras tumorais obtidas de 79 pacientes crianças, adolescentes e adultos jovens (idade <21 anos) com diagnóstico de câncer diferenciado de tireoide entre janeiro de 2010 e janeiro de 2021 foram recrutadas, retrospectivamente, em quatro centros de saúde dos estados da Bahia e Paraíba, Brasil. Teste de fusão genética NTRK de todas as amostras de tumor FFPE arquivadas: coloração imuno-histoquímica pan-TRK para expressão da proteína TRKA, TRKB e TRKC foi realizada e depois analisada com ensaio de sequenciamento de próxima geração baseado em RNA, para confirmar o resultado imuno- histoquímico pan-TRK e elucidar o parceiro de fusão.

Resultados: Imunohistoquímica pan-TRK: 3 de 79 casos tiveram expressão pan-TRK positiva: sequenciamento de próxima geração; 4 foram identificados com fusão do gene NTRK, a imuno-histoquímica pan-TRK foi negativa em todos os 4 casos positivos para sequenciamento de próxima geração de NTRK. 25 dos 79 casos de controle negativo para sequenciamento de próxima geração de NTRK tiveram resultados de imuno-histoquímica pan-TRK negativos concordantes. Portanto, nossa taxa de resultados de imuno-histoquímica pan-TRK falsos positivos foi de 3/25 (12%). Os resultados gerais da imuno- histoquímica pan-TRK em nossa coorte de casos negativos para sequenciamento de próxima geração foram: (i) sensibilidade (0%), (ii) especificidade (96%), (iii) valor preditivo positivo (94,7%), (iv) valor preditivo negativo (91%).

Conclusão: A imuno-histoquímica pan-TRK não foiuma triagem tecidualmente eficiente para fusões de NTRK em pacientes com câncer diferenciado de tireoide em crianças, adolescentes e adultos jovens. Esta é a maior coorte de casos de câncer diferenciado de tireoide de crianças, adolescentes e adultos jovens corados com imunohistoquímica pan-TRK, e é a primeira a detalhar a sensibilidade e especificidade da imunohistoquímica pan-TRK em relação aos dados obtidos por RNA direcionado baseado em um painel de sequenciamento de próxima geração no câncer diferenciado de tireoide.



Publication History

Received: 17 November 2023

Accepted: 19 March 2024

Article published online:
02 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Ana Clara Oliveira Tosta Telles, Gabriel Jeferson Rodríguez Machado, Juliana Lima von-Ammon, Rafael Reis Campos da-Matta, Taíse Lima Cerqueira de-Oliveira, Fabyan Esberard de Lima Beltrão, Alexandre Rolim da-Paz, Fabio Hecht, Guilherme de Castro Lopes, Leonardo Freitas Boaventura Rios, Bruno da Silva Lisboa, Helton Estrela Ramos. Immunohistochemistry and next-generation sequencing for NTRK fusion detection in differentiated thyroid cancer of children, adolescents and young adults. Brazilian Journal of Oncology 2024; 20: e-20240456.
DOI: 10.5935/2526-8732.20240456
 
  • REFERENCES

  • 1 Tamam M, Uyanik E, Edís N, Mulazimoglu M, Ozpacaci T. Differentiated thyroid carcinoma in children: clinical characteristics and long-term follow-up. World J Nucl Med 2020; 19 (01) 28-35
  • 2 Prasad PK, Mahajan P, Hawkins DS, Mostoufi-Moab S, Venkatramani R. Management of pediatric differentiated thyroid cancer: an overview for the pediatric oncologist. Pediatr Blood Cancer 2020; 67 (06) e28141
  • 3 Russo M, Malandrino P, Moleti M, Vermiglio F, D’Angelo A, RosaLa G. et al. Differentiated thyroid cancer in children: Heterogeneity of predictive risk factors. Pediatr Blood Cancer 2018; 65 (09) e27226
  • 4 Vriens MR, Moses W, Weng J, Peng M, Griffin A, Bleyer A. et al. Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer 2011; 117 (02) 259-67
  • 5 Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer 1999; 80 (06) 842-7
  • 6 Nakagawara A. TRK receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 2001; 169: 107-14
  • 7 Sassolas G, Hafdi-Nejjari Z, Ferraro A, Decaussin-Petrucci M, Rousset B, Borson-Chazot F. et al. Oncogenic alterations in papillary thyroid cancers of young 77 patients. Thyroid 2012; 22 (01) 17-26
  • 8 Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019; 32 (01) 147-53
  • 9 Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z. et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016; 122 (07) 1097-110
  • 10 Pekova B, Dvorakova S, Sykorova V, Vacinova G, Vaclavikova E, Moravcova J. et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr Connect 2019; 8 (06) 796-805
  • 11 Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P. et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers 2021; 13: 1932
  • 12 Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol 2019; 30 Suppl 8 viii16-viii22
  • 13 Cui C, Shu W, Li P. Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 2016; 4: 89
  • 14 Lee YC, Chen JY, Huang CJ, Chen HS, Yang AH, Hang JF. Detection of NTRK1/3 rearrangements in papillary thyroid carcinoma using immunohistochemistry, fluorescent in situ hybridization, and next-generation sequencing. Endocrine Pathol 2020; Dec 31 (04) 348-58
  • 15 Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRK fusion cancers in children: a clinical review and recommendations for screening. J Clin Oncol 2019; 37 (06) 513-24
  • 16 Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D. et al. Pan-TRK Immunohistochemistry. Is an efficient and reliable screen for the detection of NTRK Fusions. Am J Surg Pathol 2017; 41 (11) 1547-51
  • 17 Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK. et al. AJCC cancer staging manual [Internet]. US: Springer; 2017. [access in Y2023 April 10]. Available from http://www.springer.com/la/book/9783319406176
  • 18 Lloyd RV, Osamura RY, Klöppel G, Rosai J. Cancer IA for R on 2017. WHO Classification of Tumours of Endocrine Organs 4th ed. France: Lyon; 2017
  • 19 Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE. et al. American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016; 26 (01) 1-133
  • 20 Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M. et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 2019; 30 (09) 1417-27
  • 21 Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J. et al. Guidelines for validation of nextgeneration sequencing based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2017; 19 (03) 341-65
  • 22 Märkl B, Hirschbühl K, Dhillon C. NTRK-Fusions - a new kid on the block. Pathol Res Pract 2019; 215 (10) 152572
  • 23 Lassen U. How I treat NTRK gene fusion-positive cancers. ESMO Open 2019; 4 Suppl 2 e000612
  • 24 Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet 2013; 206 (12) 432-40
  • 25 Brzeziańska E, Pastuszak-Lewandoska D, Lewiński A. Rearrangements of NTRK1 oncogene in papillary thyroid carcinoma. Neuro Endocrinology Letters 2007; 28 (03) 221-9
  • 26 Grego A, Miranda C, Pierotti MA. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol Cell Endocrinol 2010; 321 (01) 44-9
  • 27 Sabour L, Sabour M, Ghorbian S. Clinical applications of next-generation sequencing in cancer diagnosis. Pathol Oncol Res 2017; 23 (02) 225-34
  • 28 Ronsley R, Rassekh SR, Shen Y, Lee AF, Jantzen C, Halparin J. et al. Application of genomics to identify therapeutic targets in recurrent pediatric papillary thyroid carcinoma. Cold Spring Harb Mol Case Stud 2018; 4 (02) a002568
  • 29 Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn 2019; 21 (04) 553-71
  • 30 Kummar S, Lassen UN. TRK Inhibition: a new tumor-agnostic treatment strategy. Target Oncol 2018; 13 (05) 545-56
  • 31 Rudzinski ER, Lockwood CM, Stohr BA, Vargas SO, Sheridan R, Black JO. et al. Pan-TRK Immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. Am J Surg Pathol 2018; 42 (07) 927-35
  • 32 Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D. et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2020; Jan 33 (01) 38-46
  • 33 Fazeli S, Dadu R, Waguespack SG, Sherman SI, Busaidy NL, Hu MI. et al. MON-491 TRK-fusion thyroid cancer: a clinical overview in a large population at a single cancer center. J Endocr Soc 2020; 4 Suppl 1 491