Dtsch Med Wochenschr 2019; 144(11): 739-742
DOI: 10.1055/a-0641-9625
Klinischer Fortschritt
Nephrologie
© Georg Thieme Verlag KG Stuttgart · New York

Risikoscores für chronisch nierenkranke Menschen

Risk Scores in Patients with Chronic Kidney Disease
Markus P. Schneider
1   Medizinische Klinik 4, Schwerpunkt Nephrologie und Hypertensiologie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität
2   Medizinische Klinik 4, Schwerpunkt Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen
,
Kai-Uwe Eckardt
3   Medizinische Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2019 (online)

Was ist neu?

„Tangri“-Formel zur Abschätzung der renalen Prognose Seit kurzem gibt es die Möglichkeit, das Risiko eines Nierenversagens für Patienten im CKD–Stadium G3a–G5 (eGFR 10 – 59 ml/min/1,73 m2) mithilfe der „Tangri“-Formel quantitativ abzuschätzen. Für diese Berechnung benötigt man mindestens die Variablen Alter, Geschlecht, eGFR und Albuminurie (4-Variablen-Formel). Eine erweiterte Formel mit den zusätzlichen Variablen Kalzium, Phosphat, Bikarbonat und Albumin (8-Variablen-Formel) ermöglicht eine noch präzisere Abschätzung.

Modelle des CKD-Prognose-Konsortiums Bei Patienten mit fortgeschrittener CKD im Stadium 4 oder höher (GFR-Kategorie ≥ 4, d. h. eGFR < 30 ml/min/1,73 m2) kann zudem durch neue Modelle des CKD-PC neben dem Risiko für eine terminale Niereninsuffizienz auch das Risiko für kardiovaskuläre Ereignisse und Tod in einem Zeitraum von 2 – 4 Jahren ermittelt werden. Diese neuen Prognoseformeln sind über das Internet öffentlich zugänglich gemacht worden.

Abstract

Assessing the risk of adverse outcomes associated with chronic kidney disease (CKD) is important for physicians and affected patients alike. Categorizing CKD according to the cause-GFR category-albuminuria category (CGA)-classification system proposed by KDIGO already provides a semi-quantitative assessment of risks. The more recent development of the “Tangri”-formula provides a means to quantify the risk of progression for patients with CKD stage G3a-G5 (eGFR 10 – 59 ml/min/1.73 m2) to kidney failure requiring kidney replacement therapy. To use this formula, the variables age, sex, eGFR and albuminuria are required (4-variable equation). An extended formula with the additional parameters calcium, phosphate, bicarbonate and albumin (8-variable equation) allows an even more precise estimation of progression risk. In patients with advanced CKD, stage G4 or higher (GFR category ≥ 4, i. e. eGFR < 30 ml/min/1.73 m2), models recently developed by the CKD-prognosis consortium can not only be used to predict the risk of kidney failure but also the risk of cardiovascular disease events and death. The risk estimators can be accessed through websites (http://kidneyfailurerisk.com, http://www.ckdpcrisk.org/lowgfrevents/) and via downloading of the respective “apps”. These novel tools may prove useful for health care decisions and as a basis for discussions with CKD patients.

 
  • Literatur

  • 1 Girndt M, Trocchi P, Scheidt-Nave C. et al. The Prevalence of Renal Failure. Results from the German Health Interview and Examination Survey for Adults, 2008–2011 (DEGS1). Dtsch Ärztebl Int 2016; 113: 85-91
  • 2 Stevens PE, Levin A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Int Med 2013; 158: 825-830
  • 3 Tangri N, Stevens LA, Griffith J. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011; 305: 1553-1559
  • 4 Tangri N, Grams ME, Levey AS. et al. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis. JAMA 2016; 315: 164-174
  • 5 Eckardt KU, Barthlein B, Baid-Agrawal S. et al. The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrol Dial Transplant 2012; 27: 1454-1460
  • 6 Potok OA, Nguyen HA, Abdelmalek JA. et al. Patients, “Nephrologists”, and Predicted Estimations of ESKD Risk Compared with 2-Year Incidence of ESKD. Clin J Am Soc Nephrol 2019;
  • 7 Eckardt KU, Gillespie IA, Kronenberg F. et al. High cardiovascular event rates occur within the first weeks of starting hemodialysis. Kidney Int 2015; 88: 1117-1125
  • 8 Kurella Tamura M, Covinsky KE, Chertow GM. et al. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med 2009; 361: 1539-1547
  • 9 Grams ME, Sang Y, Ballew SH. et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int 2018; 93: 1442-1451
  • 10 Charytan DM, Solomon SD, Ivanovich P. et al. ESRD After Heart Failure, Myocardial Infarction, or Stroke in Type 2 Diabetic Patients With CKD. Am J Kidney Dis 2017; 70: 522-531