Subscribe to RSS
DOI: 10.1055/a-0648-8874
Reliability of an ice hockey-specific complex test
Reliabilität eines eishockeyspezifischen KomplextestsPublication History
Publication Date:
03 September 2018 (online)
Abstract
Background This study assessed the intra-rater reliability of an ice hockey-specific complex test (IHCT) that reflects the intense multidirectional and intermittent efforts required in ice hockey.
Methods Twenty professional players executed the IHCT twice over an interval of 2 days. Load parameters included a 10-m sprint, a 30-m transition with and without a puck, as well as slap and wrist shots. Stress parameters were lactate concentrations and heart rates.
Results The intrarater reliability (ICC) ranged from 0.54 to 0.98 for load parameters, and from 0.26 to 0.87 for stress parameters. 33 % (3/9) of stress parameters and 82 % (18/22) of load parameters had an ICC > 0.75. The largest limits of agreement were 41.6 for slap shot 1 after test and 50.4 for 6-min heart rate recovery. The smallest were 0.40 (10-m sprint without a puck) and 5.36 (resting lactate). The intra-rater reliability as shown by the coefficient of variation (CV) was lower for stress than for load parameters (mean CV: 13.4 vs. 4.7). 68 % (15/22) of load parameters and 11 % (1/9) of stress parameters showed a CV below 5 %.
Conclusion The IHCT is currently the only ice hockey-specific complex test with scientifically tested reliability and validity that can analyze performance under conditions similar to competition. It is suggested that coaches, fitness coaches and sports scientists explore use of this test as a valid tool to assess players’ performance and the effectiveness of training interventions.
Zusammenfassung
Fragestellung Ziel der Studie war es, einen validierten eishockeyspezifischen Komplextest (IHCT), der eng am Anforderungsprofil der Sportart orientiert ist, hinsichtlich seiner Intrarater-Reliabilität zu prüfen.
Material und Methoden 20 professionelle Eishockeyspieler absolvierten den IHCT im Abstand von 2 Tagen. Innerhalb des IHCT wurden sowohl Belastungsparameter (z. B. Sprintzeit 10 m und 30 m ohne und mit Puck, Schussgeschwindigkeit und -genauigkeit) als auch Beanspruchungsparameter (Laktat, Herzfrequenz) erfasst.
Ergebnisse Seitens der Belastungsparameter bewegte sich die Intrarater-Reliabilität (Intraclass-Korrelationskoeffizient (ICC)) zwischen 0,54 und 0,98. Für die Beanspruchungsparameter ließen sich ICC-Werte zwischen 0,26 und 0,87 berechnen. 33 % (3/9) der Beanspruchungsparameter und 82 % (18/22) der Belastungsparameter zeigten eine hohe Reliabilität (ICC > 0,75). Die größten Limits of Agreement bewegten sich zwischen 41,6 (Schlagschuss 1 nach Test) und 50,4 (Erholungsherzfrequenz in Minute 6 nach Test). Die geringsten Differenzen wurden für den 10m-Sprint ohne Puck (0,40) und den Ruhe-Laktatwert (5,36) ermittelt. Auch auf der Basis des Coefficient of Variation (CV) war die Intrarater-Reliabilität für die Beanspruchungsparameter deutlich geringer als für die Belastungsparameter (CV: 13,4 vs. 4,7). 68 % (15/22) der Belastungsparameter und 11 % (1/9) der Beanspruchungsparameter wiesen einen CV unter 5 % auf.
Schlussfolgerung Der IHCT ist aktuell der einzige eishockeyspezifische Komplextest, der die sportartspezifische Leistungsfähigkeit unter wettkampfähnlichen Bedingungen testet und darüber hinaus einen wissenschaftlichen Reliabilitäts- und Validitätsnachweis besitzt. Die Testergebnisse sollten alle Akteure (Trainer, Sportwissenschaftler, Athletiktrainer, Leistungsdiagnostiker) in diesem Tätigkeitsfeld dazu ermutigen, ebenfalls sportartspezifisch zu testen, um die Leistungsfähigkeit der Spieler und die Wirksamkeit von Trainingsinterventionen valide beurteilen zu können.
-
References
- 1 Nightingale SC, Miller S, Turner A. The usefulness and reliability of fitness testing protocols for ice hockey players: a literature review. J Strength Cond Res 2013; 27: 1742-1748
- 2 Schwesig R, Hermassi S, Edelmann S. et al. Relationship between ice hockey-specific complex test and maximal strength, aerobic capacity and postural regulation in professional players. J Sports Med Phys Fitness 2017; 57: 1415-1423
- 3 Buchheit M, Lefebvre B, Laursen PB. et al. Reliability, usefulness, and validity of the 30-15 Intermittent Ice Test in young elite ice hockey players. J Strength Cond Res 2011; 25: 1457-1464
- 4 Hoppe MW, Freiwald J, Baumgart C. et al. Relationship between core strength and key variables of performance in elite rink hockey players. J Sports Med Phys Fitness 2015; 55: 150-157
- 5 Montgomery DL. Physiological profile of professional hockey players -- a longitudinal comparison. Appl Physiol Nutr Metab 2006; 31: 181-185
- 6 Cox MH, Miles DS, Verde TJ. et al. Applied physiology of ice hockey. Sports Med 1995; 19: 184-201
- 7 Burr JF, Jamnik RK, Baker J. et al. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J Strength Cond Res 2008; 22: 1535-1543
- 8 Krause DA, Smith AM, Holmes LC. et al. Relationship of off-ice and on-ice performance measures in high school male hockey players. J Strength Cond Res 2012; 26: 1423-1430
- 9 Prokop NW, Reid RE, Andersen RE. Seasonal Changes in Whole Body and Regional Body Composition Profiles of Elite Collegiate Ice-Hockey Players. J Strength Cond Res 2016; 30: 684-692
- 10 Ransdell LB, Murray T. A physical profile of elite female ice hockey players from the USA. J Strength Cond Res 2011; 25: 2358-2363
- 11 Wilson K, Snydmiller G, Game A. et al. The development and reliability of a repeated anaerobic cycling test in female ice hockey players. J Strength Cond Res 2010; 24: 580-584
- 12 Burr JF, Jamnik VK, Dogra S. et al. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J Strength Cond Res 2007; 21: 1139-1145
- 13 Vescovi JD, Murray TM, Fiala KA. et al. Off-ice performance and draft status of elite ice hockey players. Int J Sports Physiol Perform 2006; 1: 207-221
- 14 Bracko MR. On-ice performance characteristics of elite and non-elite women’s ice hockey players. J Strength Cond Res 2001; 15: 42-47
- 15 Hachana Y, Chaabene H, Nabli MA. et al. Test-retest reliability, criterion-related validity, and minimal detectable change of the Illinois agility test in male team sport athletes. J Strength Cond Res 2013; 27: 2752-2759
- 16 Farlinger CM, Kruisselbrink LD, Fowles JR. Relationships to skating performance in competitive hockey players. J Strength Cond Res 2007; 21: 915-922
- 17 Schrama PP, Stenneberg MS, Lucas C. et al. Intraexaminer reliability of hand-held dynamometry in the upper extremity: a systematic review. Arch Phys Med Rehabil 2014; 95: 2444-2469
- 18 Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. Upper Saddle River: Pearson Prentice Hall; 2009
- 19 Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 2005; 19: 231-240
- 20 Hopker J, Myers S, Jobson SA. et al. Validity and reliability of the Wattbike cycle ergometer. Int J Sports Med 2010; 31: 731-736
- 21 Hopkins WG. Measures of reliability in sports medicine and science. Sports Med 2000; 30: 1-15
- 22 Cormack SJ, Newton RU, McGuigan MR. et al. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform 2008; 3: 131-144
- 23 Haj-Sassi R, Dardouri W, Gharbi Z. et al. Reliability and validity of a new repeated agility test as a measure of anaerobic and explosive power. J Strength Cond Res 2011; 25: 472-480
- 24 Impellizzeri FM, Rampinini E, Castagna C. et al. Validity of a repeated-sprint test for football. Int J Sports Med 2008; 29: 899-905
- 25 Bland JM, Altman DA. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 327: 307-310
- 26 Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. Behav Res Methods 1996; 28: 1-11
- 27 Schwesig R, Koke A, Fischer D. et al. Validity and Reliability of the New Handball-Specific Complex Test. J Strength Cond Res 2016; 30: 476-486