Klin Padiatr 2019; 231(04): 183-190
DOI: 10.1055/a-0942-1756
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Psychomotorische und kognitive Entwicklung und Lebensqualität bei Kindern und Jugendlichen mit angeborenem Herzfehler

Psychomotor and Cognitive Development and Quality of Life in Children and Adolescents with Congenital Heart Defect
Hedwig Hövels-Gürich
Dept. of Pediatric Cardiology, University Hospital RWTH Aachen, Aachen
› Author Affiliations
Further Information

Publication History

Publication Date:
19 June 2019 (online)

Zusammenfassung

Kinder mit angeborenem Herzfehler (AHF) haben ein signifikantes Risiko für psychomotorische und kognitive Entwicklungsstörungen mit negativen Auswirkungen auf die psychosoziale Situation, akademische Leistung und Lebensqualität. Wichtigste Risikofaktoren sind angeborene Merkmale wie genetische Anomalien, Art und Schweregrad des AHF und sozioökonomische Faktoren. Pränatal können durch Hypoperfusion oder Hypoxie Reifungs- und Entwicklungsstörungen des Gehirns entstehen mit der Folge postnataler Läsionen der vermehrt vulnerablen Hirnsubstanz und neurologischer Entwicklungsstörungen. Die Hochrisiko-Gruppe umfasst vor allem Säuglinge, bei denen eine Operation am offenen Herzen erforderlich ist. Es bestehen spezifische phänotypische Merkmale der Entwicklung in verschiedenen Lebensaltern: in der frühen Kindheit motorische Defizite und sprachliche Artikulationsprobleme; bei Schulkindern eine Beeinträchtigung von Sprache, Aufmerksamkeit, Gedächtnis, visuell-räumlichen Fähigkeiten, exekutiven Funktionen und motorischen Fähigkeiten, oft in Verbindung mit akademischen Defiziten sowie emotionalen oder sozialen Problemen; im Jugendalter exekutive, psychosoziale sowie psychiatrische Störungen und eine eingeschränkte Lebensqualität; im Erwachsenenalter neurokognitive, psychosoziale sowie Probleme des Selbstmanagements und der beruflichen Perspektive. Körperliche und soziale Funktionsfähigkeit, psychomotorische Entwicklung und psychisches Befinden erweisen sich als Schlüsselfaktoren für die Lebensqualität. Die Deutsche Gesellschaft für Pädiatrische Kardiologie fordert für die Hochrisikogruppe der im Säuglingsalter operierten Kinder mit AHF ausführliche serielle neuropsychologische Untersuchungen im Alter von 2 und 5 Jahren, vor Pubertät und vor Beginn des Erwachsenenalters, um frühzeitig Teilleistungsstörungen erkennen und behandeln zu können.

Abstract

Children with congenital heart disease (CHD) are at significant risk of psychomotor and cognitive developmental disorders, with negative effects on psychosocial and academic performance and quality of life. Innate characteristics such as genetic abnormalities, type and severity of CHD and socioeconomic factors are the most important risk factors. Prenatally, hypoperfusion or hypoxia can cause developmental and maturation disorders of the brain, thus promoting postpartum lesions of the more vulnerable brain substance and neurodevelopmental disorders. The high-risk group includes primarily infants requiring open heart surgery. Specific phenotypic characteristics of development emerge at different ages: in early childhood motor and linguistic articulation deficits; at school age impaired speech and language, attention, memory, visual-spatial, executive, and motor skills, often associated with academic deficits, and emotional or social issues; in adolescence executive, psychosocial and psychiatric disorders and impaired quality of life; in adulthood, neurocognitive, psychosocial and problems of self-management and professional perspective. Physical and social functioning, psychomotor development and mental health are key factors for quality of life. The German Society of Pediatric Cardiology demands detailed serial neuropsychological examinations at the age of 2 and 5 years, before puberty and before adulthood, for the high-risk group of children with CHD operated on in infant age in order to detect and to treat partial performance disorders at an early stage.

 
  • Literatur

  • 1 Anderson V, Spencer-Smith M, Wood A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 2011; 134 Pt 8 2197-2221
  • 2 Andropoulos DB, Hunter JV, Nelson DP. et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg 2010; 139: 543-556
  • 3 Atallah J, Joffe AR, Robertson CM. et al. Western Canadian Complex Pediatric Therapies Project Follow-up Group. Two-year general and neurodevelopmental outcome after neonatal complex cardiac surgery in patients with deletion 22q11.2: a comparative study. J Thorac Cardiovasc Surg 2007; 134: 772-779
  • 4 Beca J, Gunn JK, Coleman L. et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 2013; 127: 971-979
  • 5 Bellinger DC, Jonas RA, Rappaport LA. et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549-555
  • 6 Bellinger DC, Newburger JW, Wypij D. et al. Behaviour at eight years in children with surgically corrected transposition: The Boston Circulatory Arrest Trial. Cardiol Young 2009; 19: 86-97
  • 7 Bellinger DC, Newburger JW. Neuropsychological, psychosocial, and quality-of-life outcomes in children and adolescents with congenital heart disease. Progress in Pediatric Cardiology 2010; 29: 87-92
  • 8 Bellinger DC, Rivkin MJ, DeMaso D. et al. Adolescents with tetralogy of Fallot: neuropsychological assessment and structural brain imaging. Cardiol Young 2015; 25: 338-347
  • 9 Bellinger DC, Wypij D, duPlessis AJ. et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126: 1385-1396
  • 10 Bellinger DC, Wypij D, Kuban KC. et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999; 100: 526-532
  • 11 Bellinger DC, Wypij D, Rivkin MJ. et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation 2011; 124: 1361-1369
  • 12 Bellinger DC. Are children with congenital cardiac malformations at increased risk of deficits in social cognition?. Cardiol Young 2008; 18: 3-9 Review
  • 13 Cassidy AR, White MT, DeMaso DR. et al. Executive Function in Children and Adolescents with Critical Cyanotic Congenital Heart Disease. J Int Neuropsychol Soc 2015; 21: 34-49
  • 14 Clouchoux C, du Plessis AJ, Bouyssi-Kobar M. et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 2013; 23: 2932-2943
  • 15 DeMaso DR, Labella M, Taylor GA. et al. Psychiatric disorders and function in adolescents with d-transposition of the great arteries. J Pediatr 2014; 165: 760-766
  • 16 Deutsche Gesellschaft für Pädiatrische Kardiologie
  • 17 Donofrio MT, Duplessis AJ, Limperopoulos C. Impact of congenital heart disease on fetal brain development and injury. Curr Opin Pediatr 2011; 23: 502-511
  • 18 Galli KK, Zimmerman RA, Jarvik GP. et al. Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2004; 127: 692-704
  • 19 Gatzoulis MA. Adult congenital heart disease: education, education, education. Nat Clin Pract Cardiovasc Med 2006; 3: 2-3
  • 20 Gaynor JW, Kim DS, Arrington CB. et al. Validation of association of the apolipoprotein E ε2 allele with neurodevelopmental dysfunction after cardiac surgery in neonates and infants. J Thorac Cardiovasc Surg 2014; 148: 2560-2566
  • 21 Gaynor JW, Stopp C, Wypij D. et al. International Cardiac Collaborative on Neurodevelopment (ICCON) Investigators. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015; 135: 816-825
  • 22 Gaynor JW, Wernovsky G, Jarvik GP. et al. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg 2007; 133: 1344-1353 1353.e1-3.
  • 23 Gaynor JW, Wypij D, Stopp C. et al. Impact of operative and postoperative factors on neurodevelopmental outcomes after cardiac surgery. Ann Thorac Surg 2016; 102: 843-849
  • 24 Gaynor JW. The encephalopathy of congenital heart disease. J Thorac Cardiovasc Surg 2014; 148: 1790-1791
  • 25 Gerstle M, Beebe DW, Drotar D. et al. Executive functioning and school performance among pediatric survivors of complex congenital heart disease. J Pediatr 2016; pii: S0022-3476(16)00030-5
  • 26 Goldberg CS, Lu M, Sleeper LA. et al. Pediatric Heart Network Investigators. Factors associated with neurodevelopment for children with single ventricle lesions. J Pediatr 2014; 165: 490-496.e8
  • 27 Heinrichs AK, Holschen A, Krings T. et al. Neurologic and psycho-intellectual outcome related to structural brain imaging in adolescents and young adults after neonatal arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg 2014; 148: 2190-2199
  • 28 Herberg U, Hövels-Gürich H. Neurologische und psychomotorische Entwicklung von Feten und Neugeborenen mit angeborenen Herzfehlern – Ursachen und Prävalenz von Störungen im Langzeitverlauf. Z Geburtshilfe Neonatol 2012; 216: 132-140
  • 29 Heye KN, Knirsch W, Latal B. et al. Reduction of brain volumes after neonatal cardiopulmonary bypass surgery in single-ventricle congenital heart disease before Fontan completion. Pediatr Res 2018; 83: 63-70
  • 30 Hinton RB, Andelfinger G, Sekar P. et al. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res 2008; 64: 364-369
  • 31 Hirsch JC, Jacobs ML, Andropoulos D. et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg 2012; 94: 1365-1373 discussion 1373. Review.
  • 32 Holm I, Fredriksen PM, Fosdahl MA. et al. Impaired motor competence in school-aged children with complex congenital heart disease. Arch Pediatr Adolesc Med 2007; 161: 945-950
  • 33 Hövels-Gürich HH, Bauer SB, Schnitker R. et al. Long-term outcome of speech and language in children after corrective surgery for cyanotic or acyanotic cardiac defects in infancy. Eur J Paediatr Neurol 2008; 12: 378-386
  • 34 Hövels-Gürich HH, Konrad K, Skorzenski D. et al. Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg 2007; 83: 1425-1430
  • 35 Hövels-Gürich HH, Konrad K, Skorzenski D. et al. Long-term behavior and quality of life after corrective cardiac surgery in infancy for tetralogy of Fallot or ventricular septal defect. Pediatr Cardiol 2007; 28: 346-354
  • 36 Hövels-Gürich HH, Konrad K, Skorzenski D. et al. Long-term neurodevelopmental outcome and exercise capacity after corrective surgery for tetralogy of Fallot or ventricular septal defect in infancy. Ann Thorac Surg 2006; 81: 958-966
  • 37 Hövels-Gürich HH, Konrad K, Wiesner M. et al. Long term behavioural outcome after neonatal arterial switch operation for transposition of the great arteries. Arch Dis Child 2002; 87: 506-510
  • 38 Hövels-Gürich HH, Seghaye MC, Däbritz S. et al. Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg 1997; 114: 578-585
  • 39 Hövels-Gürich HH, Seghaye MC, Schnitker R. et al. Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg 2002; 124: 448-458
  • 40 Hövels-Gürich HH. Factors Influencing Neurodevelopment after Cardiac Surgery during Infancy. Front Pediatr 2016 4: 137. doi: 10.3389/fped.2016.00137 eCollection 2016; Review
  • 41 Hövels-Gürich HH. Psychomotorische Entwicklung von Kindern mit angeborenem Herzfehler. Ursachen, Prävalenz und Prävention von Entwicklungsstörungen nach Herzoperation im Säuglingsalter. Monatsschr Kinderheilkd 2012; 160: 118-128
  • 42 Kaltman JR, Di H, Tian Z. et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 2005; 25: 32-36
  • 43 Khalil A, Suff N, Thilaganathan B. et al. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014; 43: 14-24 Review
  • 44 Kharitonova M, Marino BS. An emergent phenotype: A critical review of neurodevelopmental outcomes for complex congenital heart disease survivors during infancy, childhood and adolescence. In: McCusker CG, Casey FC. (eds.). Congenital Heart Disease and Neurodevelopment: Understanding and Improving Outcomes. London: Elsevier; 1st edition, 2016. ISBN 9780128016404
  • 45 Kinney HC, Panigrahy A, Newburger JW. et al. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol 2005; 110: 563-578
  • 46 Knirsch W, Mayer KN, Scheer I. et al. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure. Eur J Cardiothorac Surg 2017; 51: 740-746
  • 47 Latal B, Helfricht S, Fischer JE. et al. Psychological adjustment and quality of life in children and adolescents following open-heart surgery for congenital heart disease: a systematic review. BMC Pediatr 2009; 22 9: 6
  • 48 Law EF, Fisher E, Fales J. et al. Systematic review and metaanalysis of parent and family-based interventions for children and adolescents with chronic medical conditions. J Ped Psychol 2014; 39: 866-886
  • 49 Limperopoulos C, Tworetzky W, McElhinney DB. et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 26-33
  • 50 Mahle WT, Tavani F, Zimmerman RA. et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106 (Suppl. 01) I109-I114
  • 51 Majnemer A, Limperopoulos C, Shevell MI. et al. A new look at outcomes of infants with congenital heart disease. Pediatr Neurol 2009; 40: 197-204
  • 52 Marino BS, Cassedy A, Drotar D. et al. The Impact of Neurodevelopmental and Psychosocial Outcomes on Health-Related Quality of Life in Survivors of Congenital Heart Disease. J Pediatr 2016; 174: 11-22.e2
  • 53 Marino BS, Lipkin PH, Newburger JW. et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 1143-1172
  • 54 Marino BS. New concepts in predicting, evaluating, and managing neurodevelopmental outcomes in children with congenital heart disease. Curr Opin Pediatr 2013; 25: 574-584
  • 55 McCusker CG, Armstrong MP, Mullen M. et al. Sibling-controlled, prospective study of outcomes at home and school in children with severe congenital heart disease. Cardiol Young 2013; 23: 507-516
  • 56 McCusker CG, Casey FC. (eds.). Congenital Heart Disease and Neurodevelopment: Understanding and Improving Outcomes. London: Elsevier; 1st edition, 2016. ISBN 9780128016404
  • 57 McCusker CG, Doherty NN, Molloy B. et al. A controlled trial of early interventions to promote maternal adjustment and development in infants born with severe congenital heart disease. Child Care Health Dev 2010; 36: 110-117
  • 58 McCusker CG, Doherty NN, Molloy B. et al. Determinants of neuropsychological and behavioural outcomes in early childhood survivors of congenital heart disease. Arch Dis Child 2007; 92: 137-141
  • 59 McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol 2010; 29: 79-85
  • 60 Mellion K, Uzark K, Cassedy A. et al. Pediatric Cardiac Quality of Life Inventory Testing Study Consortium. Health-related quality of life outcomes in children and adolescents with congenital heart disease. J Pediatr 2014; 164: 781-788.e1
  • 61 Miller SP, McQuillen PS, Hamrick S. et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 1928-1938
  • 62 Mussatto KA, Hoffmann RG, Hoffman GM. et al. Risk and prevalence of developmental delay in young children with congenital heart disease. Pediatrics 2014; 133: e570-e577
  • 63 Newburger JW, Sleeper LA, Bellinger DC. et al. Pediatric Heart Network Investigators. Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial. Circulation 2012; 125: 2081-2091
  • 64 Niemitz M, Gunst DCM, Hövels-Gürich HH. et al. Predictors of health-related quality of life in children with chronic heart disease. Cardiol Young 2017; 27: 1455-1464
  • 65 Ortinau C, Alexopoulos D, Dierker D. et al. Cortical folding is altered before surgery in infants with congenital heart disease. J Pediatr 2013; 163: 1507-1510
  • 66 Owen M, Shevell M, Donofrio M. et al. Brain volume and neurobehavior in newborns with complex congenital heart defects. J Pediatr 2014; 164: 1121-1127.e1
  • 67 Panigrahy A, Schmithorst VJ, Wisnowski JL. et al. Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. Neuroimage Clin 2015; 7: 438-448
  • 68 Reich B, Heye KN, Tuura ROG. et al. Interrelationship between hemodynamics, brain volumes and outcome in Hypoplastic Left Heart Syndrome. Ann Thorac Surg 2019; pii: S0003-4975(19)30063-3. [Epub ahead of print]
  • 69 Rivkin MJ, Watson CG, Scoppettuolo LA. et al. Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg 2013; 146: 543-9.e1
  • 70 Rollins CK, Asaro LA, Akhondi-Asl A. et al. White Matter Volume Predicts Language Development in Congenital Heart Disease. J Pediatr 2017; 181: 42-48.e2
  • 71 Sanz-Cortés M, Figueras F, Bargalló N. et al. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2010; 36: 159-165
  • 72 Schmithorst VJ, Panigrahy A, Gaynor JW. et al. Organizational topology of brain and its relationship to ADHD in adolescents with d-transposition of the great arteries. Brain Behav 2016; 6: e00504
  • 73 Schwedler G, Lindinger A, Lange PE. et al. Frequency and spectrum of congenital heart defects among live births in Germany : a study of the Competence Network for Congenital Heart Defects. Clin Res Cardiol 2011; 100: 1111-1117
  • 74 Sethi V, Tabbutt S, Dimitropoulos A. et al. Single-ventricle anatomy predicts delayed microstructural brain development. Pediatr Res 2013; 73: 661-667
  • 75 Shillingford AJ, Glanzman MM, Ittenbach RF. et al. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008; 121: e759-e767
  • 76 Snookes SH, Gunn JK, Eldridge BJ. et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 2010; 125: e818-e827
  • 77 Sun L, Macgowan CK, Sled JG. et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 1313-1323
  • 78 Utens EMWJ, Callus E, Levert EM. et al. Multidisciplinary family-centred psychosocial care for patients with CHD: consensus recommendations from the AEPC Psychosocial Working Group. Cardiol Young 2018; 28: 192-198 Review. Erratum in: Cardiol Young 2018; 28: 199
  • 79 Uzark K, Jones K, Slusher J. et al. Quality of life in children with heart disease as perceived by children and parents. Pediatrics 2008; 121: e1060-e1067
  • 80 Uzark K, Smith C, Donohue J. et al. Assessment of Transition Readiness in Adolescents and Young Adults with Heart Disease. J Pediatr 2015; 167: 1233-1238
  • 81 Vahsen N, Bröder A, Hraska V. et al. Neurodevelopmental Outcome in Children With Single Ventricle After Total Cavopulmonary Connection. Klin Padiatr 2018; 230: 24-30
  • 82 van der Mheen M, van Beynum IM, Dulfer K. et al. The CHIP-Family study to improve the psychosocial wellbeing of young children with congenital heart disease and their families: design of a randomized controlled trial. BMC Pediatr 2018; 18: 230
  • 83 Volpe JJ. Encephalopathy of congenital heart disease- destructive and developmental effects intertwined. J Pediatr 2014; 164: 962-965
  • 84 von Rhein M, Buchmann A, Hagmann C. et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain 2014; 137 Pt 1 268-276
  • 85 von Rhein M, Buchmann A, Hagmann C. et al. Heart and Brain Research Group. Severe Congenital Heart Defects Are Associated with Global Reduction of Neonatal Brain Volumes. J Pediatr 2015; 167: 1259-1263.e1
  • 86 Watson CG, Asaro LA, Wypij D. et al. Altered Gray Matter in Adolescents with d-Transposition of the Great Arteries. J Pediatr 2016; 169: 36-43.e1
  • 87 Wernovsky G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young 2006; 16 (Suppl. 01) 92-104 Review.