Subscribe to RSS
DOI: 10.1055/a-1017-3217
Factors Affecting Dexamethasone Suppression Test Results
Abstract
Dexamethasone suppression tests are basic tools in diagnostics of hypercortisolemia. Low-dose tests play major role in screening and initial assessment. High-dose tests are aimed at more elaborate diagnostics, however their clinical value is questionable. Dexamethasone is a highly potent, synthetic steroid. It is metabolized by cytochrome P450 3A4 (CYP3A4), and so are various other xenobiotics. Due to wide spectrum of substances processed by CYP3A4, interferences and interactions are not uncommon. Physicians should be familiar with drugs modifying dexamethasone metabolism, and therefore the results of dynamic tests. Other important concerns are: drugs enhancing cortisol-binding globulin production, organ dysfunction, pseudo-Cushing states, pregnancy and other physiological conditions leading to elevated blood cortisol, cyclic Cushing disease. To properly assess and assist patients, it is crucial for health professionals to understand and be able to overcome such clinical dilemmas.
Key words
hypercortisolemia - Cushing’s syndrome - glucocorticoids - dexamethasone - dexamethasone suppression test - hormonal testingPublication History
Received: 02 July 2019
Received: 27 August 2019
Accepted: 23 September 2019
Article published online:
25 October 2019
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Newell-Price J, Trainer P, Besser M. et al. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-cushing’s states. Endocr Rev 1998; 19: 647-672
- 2 Nieman LK, Biller BMK, Findling JW. et al. The diagnosis of Cushing’s syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008; 93: 1526-1540
- 3 Friedman T. An update on the overnight dexamethasone suppression test for the diagnosis of Cushing’s syndrome: Limitations in patients with mild and/or episodic hypercortisolism. Exp Clin Endocrinol Diabetes 2006; 114: 356-360
- 4 Bansal V, Asmar N E, Selman WR. et al. Pitfalls in the diagnosis and management of Cushing’s syndrome. Neurosurg Focus 2015; 38: E4
- 5 Ness-Abramof R, Nabriski D, Apovian CM. et al. Overnight dexamethasone suppression test: A reliable screen for Cushing’s syndrome in the obese. Obes Res 2002; 10: 1217-1221
- 6 Nieman L. Pitfalls in the diagnosis and differential diagnosis of Cushing’s syndrome. Clin Endocrinol (Oxf) 2014; 80: 333-334
- 7 Boscaro M, Arnaldi G. Approach to the patient with possible Cushing’s syndrome. J Clin Endocrinol Metab 2009; 94: 3121-3131
- 8 Meinardi JR, Wolffenbuttel BHR, Dullaart RPF. Cyclic Cushing’s syndrome: A clinical challenge. Eur J Endocrinol 2007; 157: 245-254
- 9 Wood PJ, Barth JH, Freedman DB. et al. Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome – Recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem An Int J Biochem. Lab Med 1997; 34: 222-229
- 10 Oki Y, Hashimoto K, Hirata Y. et al. Development and validation of a 0.5 mg dexamethasone suppression test as an initial screening test for the diagnosis of ACTH-dependent Cushing’s syndrome. Endocr J 2009; 56: 897-904
- 11 Newell-Price J, Bertagna X, Grossman AB. et al. Cushing’s syndrome. Lancet 2006; 367: 1605-1617
- 12 Aron DC, Raff H, Findling JW. Effectiveness Versus Efficacy: The limited value in clinical practice of high dose dexamethasone suppression testing in the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab 1997; 82: 1780-1785
- 13 Findling JW, Kehoe ME, Shaker JL. et al. Routine inferior petrosal sinus sampling in the differential diagnosis of adrenocorticotropin (ACTH)-dependent Cushing’s syndrome: Early Recognition of the occult ectopic ACTH syndrome. J Clin Endocrinol Metab 1991; 73: 408-413
- 14 Reimondo G, Paccotti P, Minetto M. et al. The corticotrophin-releasing hormone test is the most reliable noninvasive method to differentiate pituitary from ectopic ACTH secretion in Cushing’s syndrome. Clin Endocrinol (Oxf) 2003; 58: 718-724
- 15 Ritzel K, Beuschlein F, Berr C. et al. ACTH after 15 min distinguishes between Cushing’s disease and ectopic Cushing’s syndrome: A proposal for a short and simple CRH test. Eur J Endocrinol 2015; 173: 197-204
- 16 Zampetti B, Grossrubatscher E, Dalino Ciaramella P. et al. Bilateral inferior petrosal sinus sampling. Endocr Connect 2016; 5: R12-R25
- 17 McCance DR, McIlrath E, McNeill A. et al. Bilateral inferior petrosal sinus sampling as a routine procedure in ACTH-dependent Cushing’s syndrome. Clin Endocrinol (Oxf) 1989; 30: 157-166
- 18 Androulakis II, Kaltsas G, Chrousos G. Pseudo-Cushing’s States. MDText.com, Inc. 2000
- 19 Ramirez G, Gomez-Sanchez C, Meikle WA. et al. Evaluation of the hypothalamic hypophyseal adrenal axis in patients receiving long-term hemodialysis. Arch Intern Med 1982; 142: 1448-1452
- 20 Barbour GL, Sevier BR. Adrenal responsiveness in chronic hemodialysis. N Engl J Med 1974; 290: 1258-1258
- 21 Pm Rosman, Farag A, Peckham R. et al. Pituitary-adrenocortical function in chronic renal failure: blunted suppression and early escape of plasma cortisol levels after intravenous dexamethasone*. J Clin Endocrinol Metab 1982; 54: 528-533
- 22 Rj Workman, Wk Vaughn, Wj Stone. Dexamethasone suppression testing in chronic renal failure: pharmacokinetics of dexamethasone and demonstration of a normal hypothalamic-pituitary- adrenal axis*. J Clin Endocrinol Metab 1986; 63: 741-746
- 23 Jusko WJ, Milad MA, Ludwig EA. et al. Methylprednisolone pharmacokinetics and pharmacodynamics in chronic renal failure. Clin Nephrol 1995; 43 (Suppl. 01) S16-S19
- 24 Vj McCann, Tt Fulton. Cortisol metabolism in chronic liver disease. J Clin Endocrinol Metab 1975; 40: 1038-1044
- 25 Kütemeyer S, Schürmeyer TH, von zur Mühlen A. Effect of liver damage on the pharmacokinetics of dexamethasone. Eur J Endocrinol 1994; 131: 594-597
- 26 Orbach O, Schussler GC. Increased serum cortisol binding in chronic active hepatitis. Am J Med 1989; 86: 39-42
- 27 Thomson M. The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem 2013; 69: 559-573
- 28 Jung C, Ho JT, Torpy DJ. et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J Clin Endocrinol Metab 2011; 96: 1533-1540
- 29 Musa BU, Seal US, RP Doe. et al. Elevation of certain plasma proteins in man following estrogen administration: A dose-response relationship. J Clin Endocrinol Metab 1965; 25: 1163-1166
- 30 Evans JJ, Sin IL, Duff GB. et al. Estrogen-induced transcortin increase and progesterone and cortisol interactions: Implications from pregnancy studies. Ann Clin Lab Sci 17: 101-105
- 31 Em Scott, Hhg Mcgarrigle, Gcl Lachelin. The increase in plasma and saliva cortisol levels in pregnancy is not due to the increase in corticosteroid-binding globulin levels*. J Clin Endocrinol Metab 1990; 71: 639-644
- 32 Nolten WE, Rueckert PA. Elevated free cortisol index in pregnancy: Possible regulatory mechanisms. Am J Obstet Gynecol 1981; 139: 492-498
- 33 OA M . [Dexamethasone suppression test during pregnancy and contraception use]. Dtsch Medizinische Wochenschrift 1994; 119: 714
- 34 Cousins L, Rigg L, Hollingsworth D. et al. Qualitative and quantitative assessment of the circadian rhythm of cortisol in pregnancy. Am J Obstet Gynecol 1983; 145: 411-416
- 35 Alexandraki KI, Kaltsas GA, Isidori AM. et al. The prevalence and characteristic features of cyclicity and variability in Cushing’s disease. Eur J Endocrinol 2009; 160: 1011-1018
- 36 Checchi S, Brilli L, Guarino E. et al. Cyclic Cushing’s disease with paradoxical response to dexamethasone. J Endocrinol Invest 2005; 28: 741-745
- 37 Ronald Db, Van Loon Gr, Orth Dn. et al. Cushing’s disease with periodic hormonogenesis: One explanation for paradoxical response to dexamethasone. J Clin Endocrinol Metab 1973; 36: 445-451
- 38 Liberman B, Bl Wajchenberg, Ma Tambascia. et al. Periodic remission in cushing’s disease with paradoxical dexamethasone response: An expression of periodic hormonogenesis. J Clin Endocrinol Metab 1976; 43: 913-918
- 39 Albiger NME, Scaroni CM, Mantero F. Cyclic Cushing’s syndrome: An overview. Arq Bras Endocrinol Metabol 2007; 51: 1253-1260
- 40 Popovic V, Micic D, Nesovic M. et al. Cushing’s disease cycling over ten years. Exp Clin Endocrinol Diabetes 2009; 96: 143-148
- 41 Manenschijn L, Koper JW, van den Akker ELT. et al. A novel tool in the diagnosis and follow-up of (cyclic) Cushing’s syndrome: Measurement of long-term cortisol in scalp hair. J Clin Endocrinol Metab 2012; 97: E1836-E1843
- 42 Thomson S, Koren G, Fraser L-A. et al. Hair analysis provides a historical record of cortisol levels in Cushing’s syndrome. Exp Clin Endocrinol Diabetes 2010; 118: 133-138
- 43 Hodes A, Lodish MB, Tirosh A. et al. Hair cortisol in the evaluation of Cushing syndrome. Endocrine 2017; 56: 164-174
- 44 Cieszynski L, Jendrzejewski J, Wisniewski P. et al. Hair cortisol concentration in a population without hypothalamic–pituitary–adrenal axis disorders. Adv Clin Exp Med 2018; 28: 375-379
- 45 Leal-Cerro A, Martín-Rodríguez JF, Ibáñez-Costa A. et al. Desmopressin test in the diagnosis and follow-up of cyclical Cushing’s disease. Endocrinol y Nutr 2014; 61: 69-76
- 46 Tomlinson ES, Lewis DF, Maggs JL. et al. In vitro metabolism of dexamethasone (DEX) in human liver and kidney: The involvement of CYP3A4 and CYP17 (17,20 LYASE) and molecular modelling studies. Biochem Pharmacol 1997; 54: 605-611
- 47 Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138: 103-141
- 48 Liu Y-T, Hao H-P, Liu C-X. et al. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007; 39: 699-721
- 49 Hermann R, von Richter O. Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med 2012; 78: 1458-1477
- 50 Hellum BH, Nilsen OG. In vitro Inhibition of CYP3A4 metabolism and p-glycoprotein-mediated transport by trade herbal products. Basic Clin Pharmacol Toxicol 2008; 102: 466-475
- 51 Singer A, Wonnemann M, Müller WE. Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+1. J Pharmacol Exp Ther 1999; 290: 1363-1368
- 52 Komoroski BJ, Zhang S, Cai H. et al. Induction and inhibition of cytochromes p450 by the St. John’s wort constituent hyperforin in human hepatocyte cultures. Drug Metab Dispos 2004; 32: 512-518
- 53 He W, Wu J-J, Ning J. et al. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol Vitr 2015; 29: 1569-1576
- 54 Kent UM, Aviram M, Rosenblat M. et al. The licorice root derived isoflavan glabridin inhibits the activities of human cytochrome P450S 3A4, 2B6, and 2C9. Drug Metab Dispos 2002; 30: 709-715
- 55 Li G, Simmler C, Chen L. et al. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci 2017; 109: 182-190
- 56 Srinivas NR. Is pomegranate juice a potential perpetrator of clinical drug–drug interactions? Review of the in vitro, preclinical and clinical evidence. Eur J Drug Metab Pharmacokinet 2013; 38: 223-229
- 57 Hidaka M, Okumura M, Fujita K-I. et al. Effects of pomegranate juice on human cytochrome p450 3a (CYP3A) and carbamazepine pharmacokinetics in rats. Drug Metab Dispos 2005; 33: 644-648
- 58 Qureshi AC, Bahri A, Breen LA. et al. The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin Endocrinol (Oxf) 2007; 66: 632-635
- 59 Vastbinder M, Kuindersma M, Mulder AH. et al. The influence of oral contraceptives on overnight 1 mg dexamethasone suppression test. Neth J Med 2016; 74: 158-161
- 60 Paschali M, Willenberg HS, Fritzen R. et al. False positives on both dexamethasone testing and urinary free cortisol in women on oral contraception: Dose-response effects. Clin Endocrinol (Oxf) 2013; 79: 443-444
- 61 Nader N, Raverot G, Emptoz-Bonneton A. et al. Mitotane has an estrogenic effect on sex hormone-binding globulin and corticosteroid-binding globulin in humans. J Clin Endocrinol Metab 2006; 91: 2165-2170
- 62 Paragliola RM, Torino F, Papi G. et al. Role of mitotane in adrenocortical carcinoma – review and state of the art. Eur Endocrinol 2018; 14: 62-66
- 63 Thompson Bastin ML, Baker SN, Weant KA. Effects of etomidate on adrenal suppression: A review of intubated septic patients. Hosp Pharm 2014; 49: 177-183
- 64 Dickstein G, Lahav M, Shen-Orr Z. et al. Primary therapy for Cushing’s disease with metyrapone. JAMA J Am Med Assoc 1986; 255: 1167
- 65 Driessens N, Maiter D, Borensztein P et al. Long-term treatment with metyrapone in four patients with Cushing’s disease. Endocr Abstr 2018
- 66 Daniel E, Aylwin S, Mustafa O. et al. Effectiveness of metyrapone in treating Cushing’s syndrome: A Retrospective Multicenter Study In 195 Patients. J Clin Endocrinol Metab 2015; 100: 4146-4154
- 67 Veytsman I, Nieman L, Fojo T. Management of endocrine manifestations and the use of mitotane as a chemotherapeutic agent for adrenocortical carcinoma. J Clin Oncol 2009; 27: 4619-4629
- 68 Nieman LK, Biller BMK, Findling JW. et al. Treatment of Cushing’s syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2015; 100: 2807-2831
- 69 Tucker WS, Snell BB, Island DP. et al. Reversible adrenal insufficiency induced by ketoconazole. JAMA J Am Med Assoc 1985; 253: 2413
- 70 Correa-Silva SR, Nascif SO, Silva MR. et al. Effect of one month ketoconazole treatment on GH, cortisol and ACTH release after ghrelin, GHRP-6 and GHRH administration in patients with Cushing’s disease. Arq Bras Endocrinol Metabol 2007; 51: 1110-1117
- 71 Castinetti F, Guignat L, Giraud P. et al. Ketoconazole in Cushing’s disease: Is it worth a try?. J Clin Endocrinol Metab 2014; 99: 1623-1630
- 72 Engelhardt D, Mann K, Hörmann R. et al. Ketoconazole inhibits cortisol secretion of an adrenal adenoma in vivo and in vitro. Klin Wochenschr 1983; 61: 373-375
- 73 Schenarts CL, Burton JH, Riker RR. Adrenocortical dysfunction following etomidate induction in emergency department patients. Acad Emerg Med 2001; 8: 1-7
- 74 Hohl CM, Kelly-Smith CH, Yeung TC. et al. The effect of a bolus dose of etomidate on cortisol levels, mortality, and health services utilization: A systematic review. Ann Emerg Med 2010; 56: 105-13.e5