Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(01): 25-34
DOI: 10.1055/a-1067-3819
Original Article

Arthrodesis of the equine proximal interphalangeal joint: a biomechanical comparison of 2 different LCP systems

Application of an axial locking compression plate and 2 abaxial transarticular cortical screwsArthrodese des proximalen Interphalangealgelenks beim Pferd: biomechanischer Vergleich von 2 unterschiedlichen LCP-SystemenVerwendung einer axialen Verriegelungsplatte und zweier abaxialer transartikulärer Kortikalisschrauben
Aleksandar Vidović
1   Equine Clinic St. Georg, Trier, Germany
,
Dorothea Jansen
1   Equine Clinic St. Georg, Trier, Germany
,
Stefan Schwan
2   Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
,
Alexander Goldstein
2   Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
,
Christopher Ludtka
3   University of Tennessee Health Science Center, Memphis, TN, USA
,
Walter Brehm
4   Clinic for Horses, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
› Author Affiliations

Abstract

Objective This study compares the mechanical stability and surgical usability of 2 locking plate systems (Kyon ALPS-20 and Synthes PIP-LCP system) for arthrodesis of the equine proximal interphalangeal joint (PIJ).

Material and methods The experimental ex vivo study included 6 pairs of cadaver distal limbs (n = 12). All specimens were derived from Warmblood horses of various ages that were euthanized for non-orthopedic reasons. Of the 12 limbs collected, 3 left and 3 right distal limb specimens were randomly assigned to each system for implantation. Two abaxial 4.5-mm cortical screws were inserted transarticularly in all cases. Both systems were implanted according to the manufacturer’s instructions with the plates placed centrally between the 2 transarticular screws. The ALPS-20 systems were implanted using Kyon B-6.4-mm monocortical locking screws in all positions. The LCP systems were implanted axially using 2 Synthes 5-mm locking screws in the proximal and distal positions, with a standard 4.5-mm cortical screw inserted in the middle position. All constructs underwent CT-scans after implantation and biomechanical testing to detect implant deformation. Uniaxial mechanical loading was applied via a servo-hydraulic test system at a test speed of 50 mm/s, up to a maximum displacement of 80 mm. The resulting load-displacement curves were used to calculate yield point, stiffness, and maximum force for each construct. The measured values were evaluated for statistical significance (p < 0.05) between the 2 plate systems via one-factor ANOVA (Tukey test). The statistical power was verified for yield force, stiffness, and maximum load.

Results No statistically significant differences between the 2 preparation groups were calculated across all of the measured parameters (p > 0.05). The ALPS system implants showed no signs of deformation, either in the plates or the screws. In contrast, the LCP demonstrated visible deformation, which had already occurred at the time of implantation from the tightening of the middle screw, as well as during the subsequent testing of the implants. After biomechanical testing, deformations ranging between 3.1° and 7.0° were measured in 4 LCPs. A total implant failure was observed for 2 LCPs.

Conclusion and clinical relevance Both systems demonstrated comparable mechanical properties in the present study’s ex vivo test model for equine PIJ arthrodesis. As such, the Kyon ALPS-20 may be a good alternative to the Synthes LCP for equine PIJ arthrodesis.

Zusammenfassung

Gegenstand und Ziel Vergleich von mechanischer Stabilität und chirurgischer Handhabung von 2 Verriegelungsplatten-Systemen (ALPS-20, Kyon und PIP-LCP, Synthes) für die Arthrodese des proximalen Interphalangealgelenks beim Pferd.

Material und Methoden Für diese Ex-vivo-Studie standen 6 Beinpaare von adulten Warmblutpferden zur Verfügung, die aus einem nicht orthopädischen Grund euthanasiert wurden. Als chirurgische Technik für die Krongelenksarthrodese wurde eine axial angebrachte Verriegelungsplatte in Kombination mit 2 abaxialen transartikulären 4,5-mm-Kortikalisschrauben gewählt. Zur Fixation der ALPS-20-Platte dienten 3 monokortikal eingesetzte selbstschneidende 6,4-mm-Verriegelungsschrauben mit einer Länge von 28 mm. Die PIP-LCP wurde mit 3 bikortikalen Schrauben implantiert: 2 5,0-mm-Verriegelungsschrauben im proximalen und distalen Plattenloch und eine 4,5-mm-Kortikalisschraube im mittleren Loch. Die mechanische Testung der beiden Präparat-Implantat-Konstrukte erfolgte mit einer servohydraulischen Anlage bei einmaliger uniaxialer Belastung (Testgeschwindigkeit 50 mm/s, Belastungsamplitude 80 mm). Zur Dokumentation der Implantatdeformationen wurden alle Implantate sowohl nach der Implantierung als auch nach der biomechanischen Testung einer CT-Untersuchung auf Deformationen unterzogen. Anhand der resultierenden Belastung-Verlagerung-Kurven wurden Fließpunkt, Steifheit und maximale Belastung für jedes System berechnet. Zur Überprüfung der Messwerte auf statistisch signifikante Unterschiede (p < 0,05) zwischen den beiden Plattensystemen diente eine einfaktorielle Varianzanalyse (Tukey-Test). Statistische Power ergab sich für die Parameter Fließkraft, Steifheit und maximale Belastung.

Ergebnisse Die mechanischen Eigenschaften der beiden Verriegelungsplatten-Systemen unterschieden sich in Bezug auf Fließpunkt, Steifheit und maximale Belastung statistisch nicht signifikant (p > 0,05). Bei ALPS-20-Implantaten wurden weder nach der Implantierung noch nach der Testung Deformationen festgestellt. Im Gegensatz dazu zeigten die PIP-LCPs Deformationen in der Längsachse schon zum Zeitpunkt der Implantation, nach dem Festziehen der Schraube im mittleren Plattenloch sowie bei der biomechanischen Testung. Nach der biomechanischen Testung wiesen 4 Platten Längsachsen-Biegungen zwischen 3,1° und 7,0° auf, in 2 Fällen kam es zu einem totalen Versagen.

Schlussfolgerung und klinische Relevanz Die beiden Systeme wiesen vergleichbare mechanische Eigenschaften in Bezug auf Fließpunkt, Steifheit und maximale Belastung auf. Somit sollte das ALPS-20 für die Krongelenksarthrodese beim Pferd als gute Alternative zu dem PIP-LCP-System in Betracht gezogen werden.



Publication History

Received: 27 August 2019

Accepted: 29 October 2019

Article published online:
14 February 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Caron JP, Fretz PB, Bailey JV. et al. Proximal interphalangeal arthrodesis in the horse – a retrospective study and a modified screw technique. Vet Surg 1990; 19 (03) 196-202 DOI: doi:10.1111/j.1532–950X.1990.tb01167.x.
  • 2 Herthel TD, Rick MC, Judy CE. et al. Retrospective analysis of factors associated with outcome of proximal interphalangeal joint arthrodesis in 82 horses including Warmblood and Thoroughbred sport horses and Quarter Horses (1992–2014). Equine Vet J 2016; 48 (05) 557-564 DOI: doi:10.1111/evj.12503.
  • 3 Knox PM, Watkins JP. Proximal interphalangeal joint arthrodesis using a combination plate-screw technique in 53 horses (1994–2003). Equine Vet J 2006; 38 (06) 538-542 doi:10.2746/042516406X154840
  • 4 Lischer CJ, Auer JA. Arthrodesis techniques. In: Auer JA, Stick JA. eds. Equine Surgery. 4th ed.. St. Louis: Saunders; 2012: 1130-1147 doi:https://doi.org/10.1016/B978–1-4377–0867–7.00081–8
  • 5 MacLellan KNM, Crawford WH, MacDonald DG. Proximal interphalangeal joint arthrodesis in 34 horses using two parallel 5.5-mm cortical bone screws. Vet Surg 2001; 30 (05) 454-459 doi:10.1053/jvet.2001.25873
  • 6 Schaer TP, Bramlage LR, Embertson RM. et al. Proximal interphalangeal arthrodesis in 22 horses. Equine Vet J 2001; 33 (04) 360-365 http://www.scopus.com/inward/record.uri DOI: doi:10.2746/042516401776249552.
  • 7 Auer JA. Proximal interphalangeal arthrodesis: screw fixation. In: Fackelman GE, Auer JA, Nunamaker DM. eds. AO Principles of Equine Osteosynthesis. Davos Platz, Switzerland: AO Publishing/Thieme Verlag; 2000: 221-231
  • 8 Ahern BJ, Showalter BL, Elliott DM. et al. In vitro biomechanical comparison of a 4.5 mm narrow locking compression plate construct versus a 4.5 mm limited contact dynamic compression plate construct for arthrodesis of the equine proximal interphalangeal joint. Vet Surg 2013; 42 (03) 335-339 DOI: doi:10.1111/j.1532–950X.2013.01111.x.
  • 9 Rocconi RA, Carmalt JL, Sampson SN. et al. Comparison of limited-contact dynamic compression plate and locking compression plate constructs for proximal interphalangeal joint arthrodesis in the horse. Can Vet J 2015; 56 (06) 615-619
  • 10 Seo J, Yamaga T, Tsuzuki N. et al. In vitro biomechanical comparison of a 5-hole 4.5 mm locking compression plate and 5-hole 4.5 mm dynamic compression plate for equine proximal interphalangeal joint arthrodesis. Vet Surg 2014; 43 (05) 606-611 DOI: doi:10.1111/j.1532–950X.2014.12164.x.
  • 11 Sod GA, Riggs LM, Mitchell CF. et al. A mechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: An axial locking compression plate and two abaxial transarticular cortical screws versus an axial dynamic compression plate and two abaxial transarticular cortical screws. Vet Surg 2011; 40 (05) 571-578 DOI: doi:10.1111/j.1532–950X.2011.00830.
  • 12 Zoppa ALV, Santoni B, Puttlitz CM. et al. Arthrodesis of the equine proximal interphalangeal joint: A biomechanical comparison of 3-hole 4.5 mm locking compression plate and 3-hole 4.5 mm narrow dynamic compression plate, with two transarticular 5.5 mm cortex screws. Vet Surg 2011; 40 (02) 253-259 DOI: doi:10.1111/j.1532–950X.2010.00792.x.
  • 13 Genetzky RM, Schneider EJ, Bulter HC. et al. Comparison of two surgical procedures for arthrodesis of the proximal interphalangeal joint in horses. J Am Vet Med Assoc 1981; 179 (05) 464-468
  • 14 Steenhaut M, Verschooten F, Demoor A. Arthrodesis of the pastern joint in the horse. Equine Vet J 1985; 17 (01) 35-40
  • 15 Watt BC, Edwards RB, Markel MD. et al. Arthrodesis of the equine proximal interphalangeal joint: A biomechanical comparison of three 4.5-mm and two 5.5-mm cortical screws. Vet Surg 2001; (03) 30 DOI: doi:10.1053/jvet.2001.23353.
  • 16 Zamos DT, Honnas CM. Principles and Applications of Arthrodesis in Horses. Comp Contin Educ Pract Vet 1993; 15 (11) 1533-1541
  • 17 Carmalt JL, Delaney L, Wilson DG. Arthrodesis of the proximal interphalangeal joint in the horse: A cyclic biomechanical comparison of two and three parallel cortical screws inserted in lag fashion. Vet Surg 2010; 39 (01) 91-94 doi:10.1111/j.1532–950X.2009.00614.x
  • 18 Read EK, Chandler D, Wilson DG. Arthrodesis of the equine proximal interphalangeal joint: A mechanical comparison of 2 parallel 5.5 mm cortical screws and 3 parallel 5.5 mm cortical screws. Vet Surg 2005; 34 (02) 142-147 doi:10.1111/j.1532–950X.2005.00022.x
  • 19 Schneider RK, Bramlage LR, Hardy J. Arthrodesis of the distal interphalangeal joint in 2 horses using 3 parallel 5.5-mm cortical screws. Vet Surg 1993; 22 (02) 122-128 doi:10.1111/j.1532–950X.1993.tb01685.x
  • 20 Sod GA, Riggs LM, Mitchell CF. et al. An in vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: An axial positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion versus three parallel transarticular cortical screws inserted in lag fashion. Vet Surg 2010; 39 (01) 83-90 DOI: doi:10.1111/j.1532–950X.2009.00615.x.
  • 21 Galuppo LD, Stover SM, Willits NH. A biomechanical comparison of double-plate and Y-plate fixation for comminuted equine second phalangeal fractures. Vet Surg. 2000 29. (2). doi:10.1111/j.1532–950X.2000.00152.x
  • 22 James FM, Richardson DW. Minimally invasive plate fixation of lower limb injury in horses: 32 cases (1999–2003). Equine Vet J 2006; 38 (03) 246-251 doi:10.2746/042516406776866291
  • 23 Sod GA, Mitchell CF, Hubert JD. et al. In vitro biomechanical comparison of equine proximal interphalangeal joint arthrodesis techniques: Prototype equine spoon plate versus axially positioned dynamic compression plate and two abaxial transarticular cortical screws inserted in lag fashion. Vet Surg 2007; (08) 36 DOI: doi:10.1111/j.1532–950X.2007.00338.x.
  • 24 Scapozza C. Entwicklung eines dichte- und temperaturabhängigen Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens von Schnee. Zurich: Swiss Federal Institute for Technology; 2004
  • 25 Kolupaev VA, Yu M-H, Altenbach H. Fitting of the strength hypotheses. Acta Mechanica 2016; 227 (06) 1533-1556 doi:10.1007/s00707–016–1566–9
  • 26 Bras JJ, Lillich JD, Beard WL. et al. Effect of a collateral ligament sparing surgical approach on mechanical properties of equine proximal interphalangeal joint arthrodesis constructs. Vet Surg 2011; 40 (01) 73-81 DOI: doi:10.1111/j.1532–950X.2010.00741.x.
  • 27 Wolker RRE, Wilson DG, Allen AL. et al. Evaluation of ethyl alcohol for use in a minimally invasive technique for equine proximal interphalangeal joint arthrodesis. Vet Surg 2011; 40 (03) 291-298 DOI: doi:10.1111/j.1532–950X.2010.00794.x.
  • 28 Wintermantel E, Ha S-W. Medizintechnik Life Science Engineering. Berlin: Springer; 2008. https://www.springer.com/de/book/9783540939351
  • 29 Biyikli S, Modest MF, Tarr R. Measurement of thermal properties for human femora. J Biomed Mat Res 1986; 20 (09) 1335-1345
  • 30 Calttenburg R, Cohen J, Conner S. et al. Thermal properties of cancellous bone. J Biomed Mat Res 1975; 9 (02) 169-182