Subscribe to RSS
DOI: 10.1055/a-1070-9874
3D printing of fillable individual thyroid replicas based on nuclear medicine DICOM data used as phantoms for gamma probe calibration
3D-Druck von füllbaren patientenspezifischen Schilddrüsenreplikaten mittels nuklearmedizinisch akquirierten DICOM-Datensätzen für die Kalibrierung von GammamesssondenPublication History
11 September 2019
28 November 2019
Publication Date:
19 December 2019 (online)
Abstract
Aim To proof the feasibility of manufacturing patient-indivdual (anthropomorphic) thyroid replicas from I-124 PET DICOM datasets by means of 3D printing. A possible field of application is the use of those phantoms for the calibration of gamma probes.
Methods After editing of the DICOM datasets using several software types and transferring into a dedicated stereolithography format, 10 fillable thyroid replicas (35–200 mL) made of polylactide acid were manufactured via 3D printing. All replicas were filled with a water-solution containing 3.5 MBq I-131 and applied to a standard neck phantom. Calibration factor measurements were carried out using a clinical gamma probe. Measurements were performed with three different tilts: + 15°, 0° and –15°. The influence of the replicas’ volume and the tilt was investigated.
Results Manufacturing of the replicas was successful in all cases. The time required for data processing was 13 ± 2 (median: 12, range: 9–25) min and 4–11 h for 3D printing (size-dependent). The printing process could be done overnight. Measured mean calibration factor for straight gamma probe positioning (0° tilt) was 31 965 ± 3360 (33 893, 25 470–34 253) cpm/MBq. A tilt of –15° resulted in lower calibration factors (–7.7 %), whereas a tilt of + 15° led to higher values (+ 9.5 %); p = 0.001. The calibration factors were highly inversely proportional correlated to the volume of the replicas (r = –0.91, p < 0.001).
Conclusion 3D printing of patient-individual (anthropomorphic) fillable thyroid replicas was feasable for a large range of volumes. The study demonstrates the influence of the volume as well as the tilt of the measured object for calibration factor measurements with gamma probes.
Zusammenfassung
Ziel Diese Studie adressiert die Herstellung von patientenspezifischen (anthropomorphen) Schilddrüsenrepliken aus I-124-PET-DICOM-Datensätzen mittels eines handelsüblichen 3D-Druckers. Als mögliches Anwendungsgebiet wurden diese Phantome zur Kalibrierung von Gammamesssonden eingesetzt.
Methoden Nach Aufbereitung der DICOM-Datensätze mittels mehrerer unterschiedlicher Computerapplikationen und Übertragung der Daten in ein spezielles Stereolithografie-Format, wurden 10 füllbare Schilddrüsenrepliken (Volumen: 35–200 ml) im 3D-Druckverfahren hergestellt. Alle Repliken wurden mit einer Wasserlösung (inklusive 3,5 MBq I-131) befüllt und in ein standardisiertes Halsphantom eingebracht. Es wurden Kalibrierfaktoren unter Verwendung einer klinischen Gammamesssonde ermittelt. Die Messungen wurden mit 3 verschiedenen Neigungen der Sonde durchgeführt: + 15°, 0° und –15°. Der Einfluss des Replikatvolumens und der Gammasondenneigung auf den Kalibrierungsfaktor wurde berechnet.
Ergebnisse Die Herstellung der Repliken war in allen Fällen erfolgreich. Die für die Datenverarbeitung erforderliche Zeit betrug 13 ± 2 (Median: 12, Bandbreite: 9–25) Minuten und 4–11 Stunden für den 3D-Druck (größenabhängig). Der 3D-Druck konnte über Nacht erfolgen. Der Kalibrierfaktor betrug bei gerader Sondenpositionierung (0° Neigung) 31 965 ± 3360 (33 893, 25 470–34 253) cpm/MBq. Eine Neigung von –15° führte zu niedrigeren Kalibrierfaktoren (–7,7 %), während eine Neigung von + 15° höhere Werte ergab (+ 9,5 %; p = 0,001). Es zeigte sich eine starke umgekehrte Proportionalität der Kalibrierfaktoren zum Volumen der Schilddrüsenrepliken (r = –0,91; p < 0,001).
Schlussfolgerung Der 3D-Druck von patientenindividuellen (anthropomorphen) Schilddrüsenreplikaten war für eine große Bandbreite an Volumina möglich. Die Studie demonstrierte den Einfluss der Schilddrüsenvolumina sowie des Neigungswinkels auf die Messung von Kalibrierfaktoren mittels Gammasonden.
-
References
- 1 Hirtl A, Bergmann H, Knausl B. et al. Technical Note: Fully-automated analysis of Jaszczak phantom measurements as part of routine SPECT quality control. Med Phys 2017; 44 (05) 1638-1645
- 2 Gnesin S, Leite Ferreira P, Malterre J. et al. Phantom Validation of Tc-99m Absolute Quantification in a SPECT/CT Commercial Device. Comput Math Methods Med 2016; 2016: 4360371
- 3 Kaalep A, Sera T, Rijnsdorp S. et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging 2018; 45 (08) 1344-1361
- 4 Liu CJ, Cheng JS, Chen YC. et al. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015; 29 (04) 342-350
- 5 Attarwala AA, Molina-Duran F, Busing KA. et al. Quantitative and qualitative assessment of Yttrium-90 PET/CT imaging. PLoS One 2014; 9 (11) e110401
- 6 De Werd LA, Kissick M. The Phantoms of Medical and Health Physics: Devices for Research and Development. Springer New York; 2016
- 7 Karimi M, Mostaghimi H, Shams SF. et al. Design and Production of Two-piece Thyroid-neck Phantom by the Concurrent Use of Epoxy Resin and Poly(methyl methacrylate) Soft Tissue Equivalent Materials. J Biomed Phys Eng 2018; 8 (02) 217-222
- 8 Hanscheid H, Canzi C, Eschner W. et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging 2013; 40 (07) 1126-1134
- 9 Leary M, Kron T, Keller C. et al. Additive manufacture of custom radiation dosimetry phantoms: An automated method compatible with commercial polymer 3D printers. Materials & Design 2015; 86: 487-499
- 10 Newman ST, Zhu Z, Dhokia V. et al. Process planning for additive and subtractive manufacturing technologies. CIRP Annals 2015; 64 (01) 467-470
- 11 Upcraft S, Fletcher R. The rapid prototyping technologies. Assembly Automation 2003; 23 (04) 318-330
- 12 Martorelli M, Gerbino S, Giudice M. et al. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater 2013; 29 (02) e1-e10
- 13 Solc J, Vrba T, Burianova L. Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology. Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology 2018; 13 (09) P09108-P09118
- 14 Freesmeyer M, Kuhnel C, Westphal JG. Time efficient 124I-PET volumetry in benign thyroid disorders by automatic isocontour procedures: mathematic adjustment using manual contoured measurements in low-dose CT. Ann Nucl Med 2015; 29 (01) 8-14
- 15 Herrmann KH, Gartner C, Gullmar D. et al. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer. Med Eng Phys 2014; 36 (10) 1373-1380
- 16 Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys, 2018 Jun 22. DOI: 10.1002/mp.13058 . [Epub ahead of print]
- 17 Berman B. 3-D printing: The new industrial revolution. Business Horizons 2012; 55 (02) 155-162
- 18 Xu W, Wu S, Balamurugan GP. et al. Evaluating shape memory behavior of polymer under deep-drawing conditions. Polymer Testing 2017; 62: 295-301
- 19 Bieniosek MF, Lee BJ, Levin CS. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms. Med Phys 2015; 42 (10) 5913-5918
- 20 Kuhnel C, Winkens T, Seifert P. et al. Radiation Exposure of the Investigator during Navigated Fusion of 124iodine Pet Imaging and Ultrasound. Radiat Prot Dosimetry 2018; 181 (04) 368-373
- 21 Seifert P, Guhne F, Freesmeyer M. Hyperfunctioning Papillary Microcarcinoma Diagnosed by 124I PET/Ultrasound Fusion Imaging. Clin Nucl Med 2019; 44 (05) 404-405
- 22 Seifert P, Winkens T, Kuhnel C. et al. I-124-PET/US Fusion Imaging in Comparison to Conventional Diagnostics and Tc-99m Pertechnetate SPECT/US Fusion Imaging for the Function Assessment of Thyroid Nodules. Ultrasound Med Biol 2019; 45 (09) 2298-2308
- 23 Freesmeyer M, Winkens T, Kuehnel C. et al. 99mTc-Pertechnetate-SPECT/US Hybrid Imaging Enhances Diagnostic Certainty Compared With Conventional Thyroid Imaging With Scintigraphy and Ultrasound. Clin Nucl Med 2018; 43 (10) 747-748
- 24 Freesmeyer M, Winkens T, Kuhnel C. et al. Technetium-99m SPECT/US Hybrid Imaging Compared with Conventional Diagnostic Thyroid Imaging with Scintigraphy and Ultrasound. Ultrasound Med Biol 2019; 45 (05) 1243-1252
- 25 Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008; 29 (03) 193-207
- 26 Balon H, Silberstein E, Meier D. et al. Society of Nuclear Medicine Procedure Guideline for Thyroid Uptake Measurement: v3.0 2006.
- 27 Beaumont T, Ideias PC, Rimlinger M. et al. Development and test of sets of 3D printed age-specific thyroid phantoms for (131)I measurements. Phys Med Biol 2017; 62 (12) 4673-4693
- 28 Awad A, Trenfield SJ, Gaisford S. et al. 3D printed medicines: A new branch of digital healthcare. Int J Pharm 2018; 548 (01) 586-596
- 29 Waran V, Narayanan V, Karuppiah R. et al. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 2014; 120 (02) 489-492
- 30 Fast S, Hegedus L, Pacini F. et al. Long-term efficacy of modified-release recombinant human thyrotropin augmented radioiodine therapy for benign multinodular goiter: results from a multicenter, international, randomized, placebo-controlled, dose-selection study. Thyroid 2014; 24 (04) 727-735
- 31 Gühne F, Kuhnel C, Freesmeyer M. Comparing pre-therapeutic 124I and 131I uptake tests with intra-therapeutic 131I uptake in benign thyroid disorders. Endocrine 2017; 56 (01) 43-53