Subscribe to RSS
DOI: 10.1055/a-1132-9598
FDG-PET basierte Bestrahlungsplanung beim Lungenkarzinom – Konsequenzen aus der PET-Plan-Studie
FDG-PET-based radiotherapy planning for lung cancer – consequences of the PET-Plan-TrialZusammenfassung
Die 2020 veröffentlichten Ergebnisse der PET-Plan-Studie haben zum ersten Mal randomisiert kontrolliert eine Nichtunterlegenheit einer FDG-PET basierten involved-field-Bestrahlung beim lokal fortgeschrittenen nicht-kleinzelligen Lungenkarzinom im Vergleich zur elektiven Lymphabflussbestrahlung gezeigt. In Kombination mit einer isotoxischen Dosiseskalation resultieren daraus eindrucksvoll geringe Lokalrezidivraten. Die aus der Studie abgeleiteten technischen Voraussetzungen der Bestrahlungsplanung erfordern ein Qualitätsniveau, dessen Umsetzung beim Lungenkarzinom angestrebt werden sollte und in Zukunft ein Vorbild für die Therapie bei anderen soliden Tumoren sein kann.
Abstract
The results of the 2020 published PET-Plan-trial showed for the first time randomized controlled the non-inferiority of an FDG-PET-based involved-field radiotherapy in comparison to an elective-node-radiotherapy for local advanced non-small-cell lung cancer. In combination with an isotoxic dose-escalation impressive low recurrence-rates were presented. The technical requirements for the radiotherapy planning derived from the trial requires a level of quality that should be implemented in the treatment of lung cancer and might be a model for the radiotherapy planning in other solid tumors in the future.
Schlüsselwörter
nicht-kleinzelliges Lungenkarzinom - PET-basierte Bestrahlungsplanung - Involved-Field Bestrahlung - isotoxische DosiseskalationKeywords
non-small-cell lung cancer - PET-based radiotherapy planning - involved-field-radiotherapy - isotoxic dose escalationPublication History
Article published online:
08 April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literaturverzeichnis
- 1 Antonia SJ, Villegas A, Daniel D. et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med 2017; 377 (20) 1919-1929
- 2 Bradley J, Thorstad WL, Mutic S. et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59: 78-86
- 3 Faria SL, Menard S, Devic S. et al. Impact of FDG-PET/CT on radiotherapy volume delineation in non-small-cell lung cancer and correlation of imaging stage with pathologic findings. Int J Radiat Oncol Biol Phys 2008; 70: 1035-1038
- 4 Prathipati A, Manthri RG, Subramanian BV. et al. A Prospective Study Comparing Functional Imaging ((18)F-FDG PET) Versus Anatomical Imaging (Contrast Enhanced CT) in Dosimetric Planning for Non-small Cell Lung Cancer. Asia Ocean J Nucl Med Biol 2017; 5: 75-84
- 5 Zheng Y, Sun X, Wang J. et al. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer. Oncol Lett 2014; 7: 1015-1020
- 6 Emami B, Mirkovic N, Scott C. et al. The impact of regional nodal radiotherapy (dose/volume) on regional progression and survival in unresectable non-small cell lung cancer: an analysis of RTOG data. Lung Cancer 2003; 41: 207-214
- 7 Giraud P, De Rycke Y. et al. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?. Int J Radiat Oncol Biol Phys 2006; 64: 127-135
- 8 Schild SE, Fan W, Stinchcombe TE. et al. Toxicity related to radiotherapy dose and targeting strategy: a pooled analysis of cooperative group trials of combined modality therapy for locally advanced non–small cell lung cancer. J Thorac Oncol 2019; 14: 298-303
- 9 De Ruysscher D, Wanders S, van Haren E. et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with nonsmall-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2005; 62: 988-994
- 10 Li R, Yu L, Lin S. et al. Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF). Radiat Oncol 2016; 11: 124
- 11 De Ruysscher D, Faivre-Finn C, Moeller D. et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124: 1-10
- 12 Nestle U, De Ruysscher D, Ricardi U. et al. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer. Radiother Oncol 2018; 127: 1-5
- 13 Nestle U, Schimek-Jasch T, Kremp S. et al. Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. PET-Plan study group. Lancet Oncol 2020; 21: 581-592
- 14 Bradley JD, Hu C, Komaki RR. et al. Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy With or Without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer. J Clin Oncol 2020; 38: 706-714
- 15 Everitt S, Plumridge N, Herschtal A. et al. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer. Radiother Oncol 2013; 106: 288-291
- 16 Geiger GA, Kim MB, Xanthopoulos EP. et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non-small-cell lung cancer. Clin Lung Cancer 2014; 15: 79-85
- 17 Schimek-Jasch T, Troost EG, Rücker G. et al. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: reducing the interobserver variability in multicentre clinical studies. Strahlenther Onkol 2015; 191: 525-533
- 18 Schaefer A, Kremp S, Hellwig D. et al. A contrast-oriented algorithm for FDG-PET-based delineation of tumor volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008; 35: 1989-1999
- 19 Schaefer A, Nestle U, Kremp S. et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nucl Med 2012; 51: 101-10
- 20 Chapet O, Kong FM, Quint LE. et al. CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 2005; 63: 170-78
- 21 Lynch R, Pitson G, Ball D. et al. Computed tomographic atlas for the new international lymph node map for lung cancer: a radiation oncologist perspective. Pract Radiat Oncol 2013; 3: 54-66
- 22 Gardin I. Methods to delineate tumour for radiotherapy by fluorodeoxyglucose positron emission tomography. Cancer Radiother 2020; 24: 418-422
- 23 Schaefer A, Vermandel M, Baillet C. et al. Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation. Eur J Nucl Med Mol Imaging 2016; 43: 911-924
- 24 Chirindel A, Adebahr S, Schuster D. et al. Impact of 4D-18FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother Oncol 2015; 115: 335-341
- 25 Grootjans W, de Geus-Oei LF, Bussink J. et al. Image-guided adaptive radiotherapy in patients with locally advanced non-small cell lung cancer: the art of PET. Q J Nucl Med Mol Imaging 2018; 62: 369-384
- 26 Kong FM, Ten Haken RK, Schipper M. et al. Effect of Midtreatment PET/CT-Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Locally Advanced Non-Small-Cell Lung Cancer: A Phase 2 Clinical Trial. JAMA Oncol 2017; 3: 1358-1365
- 27 Cremonesi M, Gilardi L, Ferrari ME. et al. Role of interim (18)F-FDG-PET/CT for the early prediction of clinical outcomes of Non-Small Cell Lung Cancer (NSCLC) during radiotherapy or chemo-radiotherapy. A systematic review. Eur J Nucl Med Mol Imaging 2017; 44: 1915-1927
- 28 Vera P, Mihailescu SD, Lequesne J. et al. Radiotherapy boost in patients with hypoxic lesions identified by 18 F-FMISO PET/CT in non-small-cell lung carcinoma: can we expect a better survival outcome without toxicity?. Eur J Nucl Med Mol Imaging 2019; 46: 1448-1456