Subscribe to RSS
DOI: 10.1055/a-1180-9621
Brustwandrekonstruktion mittels Polypropylennetz: eine monozentrische 8-jährige Analyse
Chest Wall Reconstruction Using Polypropylene Mesh: a Single-Center 8-Year AnalysisZusammenfassung
Einleitung Brustwandresektionen für die Behandlung von malignen Erkrankungen benötigen häufig eine Rekonstruktion des Defektes. Wir berichten über unsere monozentrische, 8-jährige Erfahrung in Brustwandrekonstruktion mithilfe eines monofilen Polypropylennetzes. Ziel unserer retrospektiven Analyse war die Erkennung von materialbezogenen Komplikationen und der Vergleich mit der vorhandenen Literatur.
Material und Methoden Einschlusskriterium in unserer retrospektiven Kohorte war eine Brustwandvollexzision und Rekonstruktion mittels Polypropylennetzes bei hauptsächlich onkologischem Indikationsspektrum (z. B. Sarkome, Metastasen, Lungenkarzinome mit Infiltration der Brustwand) im Zeitraum Januar 2008 bis Januar 2017. Primäre Endpunkte waren materialbezogene Komplikationen: lokale Infektion, Serom, Materialmigration, Netzexplantation und Brustwandinstabilität. Sekundäre Endpunkte waren folgende postoperative Komplikationen: Pneumonie, Acute respiratory Distress Syndrome (ARDS), Nachblutung und prolongierte postoperative Beatmung (> 24 h postoperativ).
Ergebnisse In einem Zeitraum von 8 Jahren wurden insgesamt 202 Brustwandresektionen in unserer Klinik durchgeführt. Davon wurden 138 Defekte mithilfe eines Polypropylennetzes rekonstruiert. Mit einer Rate von 12,3% war die Pneumonie die häufigste postoperative Komplikation. In 5,7% der Fälle entwickelte sich ein Wundserom, das die Anlage einer Redon-Sogdrainage notwendig machte. In 3 Fällen (2,1%) wurde eine lokale Wundinfektion mikrobiologisch bestätigt. In einem dieser Fälle musste das Rekonstruktionsmaterial entfernt werden. Die 30-Tage-Mortalität betrug 1,4% mit 2 postoperativen Todesfällen. Eine Materialmigration oder Brustwandinstabilität mit paradoxem Atembewegungsmuster wurden in keinem Fall dokumentiert.
Fazit Die Brustwandrekonstruktion mittels Polypropylen ist eine komplikationsarme Technik. Die hier aufgezeigte niedrige Rate an lokalen Infektionen, Materialexplantationen sowie Brustkorbinstabilität kann ein hilfreicher Entscheidungsfaktor für den operierenden Thoraxchirurgen auf der Suche nach dem geeigneten Rekonstruktionsmaterial sein.
Abstract
Background Chest wall resection for malignant tumours is usually combined with reconstruction of the bony defect. We analysed our single centre, 8-year, experience using polypropylene mesh for chest wall reconstruction. The goal of our retrospective study was to identify material-related complications and to compare them with the existing literature.
Methods The inclusion criterion in our retrospective cohort was a full-thickness chest wall excision and reconstruction using a polypropylene mesh with a mainly oncological indication spectrum (e.g. sarcomas, metastases, lung carcinomas with infiltration of the chest wall) in the period from January 2008 to January 2017. Primary endpoints were material-related complications: local infection, seroma, material migration, mesh explantation and chest wall instability. Secondary endpoints were the following postoperative complications: pneumonia, acute respiratory distress syndrome (ARDS), postoperative bleeding and prolonged postoperative ventilation (> 24 h postoperatively).
Results A total of 202 chest wall resections were performed in our clinic over a period of 8 years. Of these, 138 defects were reconstructed using a polypropylene mesh. Pneumonia was the most common postoperative complication at a rate of 12.3%. In 5.7% of the cases, a wound seroma developed that made it necessary to insert a Redon suction drain. Local wound infection was confirmed microbiologically in three cases (2.1%). In one of these cases, the reconstruction material had to be removed. The 30-day mortality rate was 1.4% with two postoperative deaths. Material migration or chest wall instability with a paradoxical pattern of breathing movement were not documented.
Conclusion Chest wall reconstruction using polypropylene mesh is a technique with low material-related complication rate. The low rate of local infections, material explantation, and chest instability documented in our cohort can be a helpful decision factor for the operating thoracic surgeon looking for the appropriate reconstruction material.
Publication History
Article published online:
06 July 2020
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Sanna S, Brandolini J, Pardolesi A. et al. Materials and techniques in chest wall reconstruction: a review. J Vis Surg 2017; 3: 95 doi:10.21037/jovs.2017.06.10
- 2 Ferraro P, Cugno S, Liberman M. et al. Principles of chest wall resection and reconstruction. Thorac Surg Clin 2010; 20: 465-473 doi:10.1016/j.thorsurg.2010.07.008
- 3 Bacakova L, Filova E, Parizek M. et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 2011; 29: 739-767 doi:10.1016/j.biotechadv.2011.06.004
- 4 Deschamps C, Tirnaksiz BM, Darbandi R. et al. Early and long-term results of prosthetic chest wall reconstruction. J Thorac Cardiovasc Surg 1999; 117: 588-591
- 5 Schroeder-Finckh A, Lopez-Pastorini A, Galetin T. et al. Anterior chest wall reconstruction using polypropylene mesh: a retrospective study. Thorac Cardiovasc Surg 2019;
- 6 Faber DL, Fadel E, Kolb F. et al. Outcome of full-thickness chest wall resection for isolated breast cancer recurrence. Eur J Cardiothorac Surg 2013; 44: 637-642 doi:10.1093/ejcts/ezt105
- 7 Mansour KA, Thourani VH, Losken A. et al. Chest wall resections and reconstruction: a 25-year experience. Ann Thorac Surg 2002; 73: 1720-1725
- 8 Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 2005; 63: 5-24 doi:10.1016/j.ijrobp.2005.03.047
- 9 Terao Y, Taniguchi K, Fujii M. et al. Postmastectomy radiation therapy and breast reconstruction with autologous tissue. Breast Cancer 2017; 24: 505-510 doi:10.1007/s12282-017-0760-5
- 10 Hameed A, Akhtar S, Naqvi A. et al. Reconstruction of complex chest wall defects by using polypropylene mesh and a pedicled latissimus dorsi flap: a 6-year experience. J Plast Reconstr Aesthet Surg 2008; 61: 628-635 doi:10.1016/j.bjps.2007.04.011
- 11 Hanna WC, Ferri LE, McKendy KM. et al. Reconstruction after major chest wall resection: can rigid fixation be avoided?. Surgery 2011; 150: 590-597 doi:10.1016/j.surg.2011.07.055
- 12 De Palma A, Sollitto F, Loizzi D. et al. Chest wall stabilization and reconstruction: short and long-term results 5 years after the introduction of a new titanium plates system. J Thorac Dis 2016; 8: 490-498 doi:10.21037/jtd.2016.02.64
- 13 Berthet JP, Gomez Caro A, Solovei L. et al. Titanium implant failure after chest wall osteosynthesis. Ann Thorac Surg 2015; 99: 1945-1952 doi:10.1016/j.athoracsur.2015.02.040
- 14 Fabre D, El Batti S, Singhal S. et al. A paradigm shift for sternal reconstruction using a novel titanium rib bridge system following oncological resections. Eur J Cardiothorac Surg 2012; 42: 965-970 doi:10.1093/ejcts/ezs211
- 15 Berthet JP, Wihlm JM, Canaud L. et al. The combination of polytetrafluoroethylene mesh and titanium rib implants: an innovative process for reconstructing large full thickness chest wall defects. Eur J Cardiothorac Surg 2012; 42: 444-453 doi:10.1093/ejcts/ezs028
- 16 Aghajanzadeh M, Alavy A, Taskindost M. et al. Results of chest wall resection and reconstruction in 162 patients with benign and malignant chest wall disease. J Thorac Dis 2010; 2: 81-85
- 17 Bille A, Okiror L, Karenovics W. et al. Experience with titanium devices for rib fixation and coverage of chest wall defects. Interact Cardiovasc Thorac Surg 2012; 15: 588-595 doi:10.1093/icvts/ivs327
- 18 Chapelier AR, Missana MC, Couturaud B. et al. Sternal resection and reconstruction for primary malignant tumors. Ann Thorac Surg 2004; 77: 1001-1006 doi:10.1016/j.athoracsur.2003.08.053
- 19 Dingemann C, Linderkamp C, Weidemann J. et al. Thoracic wall reconstruction for primary malignancies in children: short- and long-term results. Eur J Pediatr Surg 2012; 22: 34-39 doi:10.1055/s-0031-1285873
- 20 Huang H, Kitano K, Nagayama K. et al. Results of bony chest wall reconstruction with expanded polytetrafluoroethylene soft tissue patch. Ann Thorac Cardiovasc Surg 2015; 21: 119-124 doi:10.5761/atcs.oa.14-00195
- 21 Lardinois D, Müller M, Furrer M. et al. Functional assessment of chest wall integrity after methylmethacrylate reconstruction. Ann Thorac Surg 2000; 69: 919-923
- 22 Marulli G, Duranti L, Cardillo G. et al. Primary chest wall chondrosarcomas: results of surgical resection and analysis of prognostic factors. Eur J Cardiothorac Surg 2014; 45: e194-e201 doi:10.1093/ejcts/ezu095
- 23 Puviani L, Fazio N, Boriani L. et al. Reconstruction with fascia lata after extensive chest wall resection: results. Eur J Cardiothorac Surg 2013; 44: 125-129 doi:10.1093/ejcts/ezs652
- 24 Smith MD, Campbell RM. Use of a biodegradable patch for reconstruction of large thoracic cage defects in growing children. J Pediatr Surg 2006; 41: 46-49 doi:10.1016/j.jpedsurg.2005.10.083
- 25 Spicer JD, Shewale JB, Antonoff MB. et al. The influence of reconstructive technique on perioperative pulmonary and infectious outcomes following chest wall resection. Ann Thorac Surg 2016; 102: 1653-1659 doi:10.1016/j.athoracsur.2016.05.072
- 26 Walsh GL, Davis BM, Swisher SG. et al. A single-institutional, multidisciplinary approach to primary sarcomas involving the chest wall requiring full-thickness resections. J Thorac Cardiovasc Surg 2001; 121: 48-60 doi:10.1067/mtc.2001.111381
- 27 Deeken CR, Melman L, Jenkins ED. et al. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg 2011; 212: 880-888 doi:10.1016/j.jamcollsurg.2011.01.006
- 28 Rocco G. Chest wall resection and reconstruction according to the principles of biomimesis. Semin Thorac Cardiovasc Surg 2011; 23: 307-313 doi:10.1053/j.semtcvs.2012.01.011
- 29 Miller DL, Force SD, Pickens A. et al. Chest wall reconstruction using biomaterials. Ann Thorac Surg 2013; 95: 1050-1056 doi:10.1016/j.athoracsur.2012.11.024