Subscribe to RSS
DOI: 10.1055/a-1337-5416
Iron-Catalyzed Remote C–H Alkylation of 8-Amidoquinolines with Cycloalkanes
This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2016-T2-2-043 to N.Y.) and Tier 1 (RG114/18 to N.Y.), the Fundamental Research Funds for China University of Petroleum (China East) (Grant No. 27RA2014007 to W.X.), and the China Postdoctoral Science Foundation (Grant No. 31CZ2019010, 05FW2014001 to W.X.).
Abstract
An iron-catalyzed, peroxide-mediated cross-dehydrogenative coupling between 8-amidoquinolines and cycloalkanes has been developed for the site-selective alkylation of the quinoline nucleus at the C5 position. The reaction tolerates various substituted N-(quinolin-8-yl)benzamides and N-(quinolin-8-yl)alkylamides, affording the corresponding C5-alkylation products in good yields. On the basis of control experiments, a reaction mechanism involving the addition of an alkyl radical to an iron-chelated intermediate is proposed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1337-5416.
- Supporting Information
Publication History
Received: 20 November 2020
Accepted after revision: 15 December 2020
Accepted Manuscript online:
15 December 2020
Article published online:
20 January 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 1b Solomon VR, Lee H. Curr. Med. Chem. 2011; 18: 1488
- 1c Colomb J, Becker G, Fieux S, Zimmer L, Billard T. J. Med. Chem. 2014; 57: 3884
- 2a Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
- 2b Khan B, Dutta HS, Koley D. Asian J. Org. Chem. 2018; 7: 1270
- 2c Xu Z, Yang X, Yin S.-F, Qiu R. Top. Curr. Chem. 2020; 378: 42
- 3 Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 4 Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
- 5a Guo H, Chen M, Jiang P, Chen J, Pan L, Wang M, Xie C, Zhang Y. Tetrahedron 2015; 71: 70
- 5b Zhang S, Ullah A, Yamamoto Y, Almansour AI, Arumugam N, Kumar RS, Bao M. ChemistrySelect 2017; 2: 3414
- 5c Ding J, Zhang Y, Li J. Org. Chem. Front. 2017; 4: 1528
- 5d Qiao H, Sun S, Yang F, Zhu Y, Kang J, Wu Y, Wu Y. Adv. Synth. Catal. 2017; 359: 1976
- 5e Du Y, Liu Y, Wan J.-P. J. Org. Chem. 2018; 83: 3403
- 5f Motati DR, Uredi D, Watkins EB. Chem. Sci. 2018; 9: 1782
- 5g Mariappan A, Das KM, Jeganmohan M. Org. Biomol. Chem. 2018; 16: 3419
- 6a Shen C, Yang M, Xu J, Chen C, Zheng K, Shen J, Zhang P. RSC Adv. 2017; 7: 49436
- 6b Vinayak B, Navyasree P, Chandrasekharam M. Org. Biomol. Chem. 2017; 15: 9200
- 6c Xia C, Wang K, Xu J, Shen C, Sun D, Li H, Wang G, Zhang P. Org. Biomol. Chem. 2017; 15: 531
- 7a Liang H.-W, Jiang K, Ding W, Yuang Y, Shuai L, Chen Y.-C, Wei Y. Chem. Commun. 2015; 51: 16928
- 7b Zhu L, Qiu R, Cao X, Xiao S, Xu X, Au C.-T, Yin S.-F. Org. Lett. 2015; 17: 5528
- 7c Qiao H, Sun S, Yang F, Zhu Y, Zhu W, Dong Y, Wu Y, Kong X, Jiang L, Wu Y. Org. Lett. 2015; 17: 6086
- 7d Wang K, Wang G, Duan G, Xia C. RSC Adv. 2017; 7: 51313
- 7e Sahoo H, Mandal A, Selvakumar J, Baidya M. Eur. J. Org. Chem. 2016; 4321
- 7f Wei J, Jiang J, Xiao X, Lin D, Deng Y, Ke Z, Jiang H, Zeng W. J. Org. Chem. 2016; 81: 946
- 7g Chen G, Zhang X, Zeng Z, Peng W, Liang Q, Liu J. ChemistrySelect 2017; 2: 1979
- 7h Bai P, Sun S, Li Z, Qiao H, Su X, Yang F, Wu Y, Wu Y. J. Org. Chem. 2017; 82: 12119
- 7i Xia H, An Y, Zeng X, Wu J. Org. Chem. Front. 2018; 5: 366
- 7j Liu X, Zhang H, Yang F, Wang B. Org. Biomol. Chem. 2019; 17: 7564
- 7k Kumar V, Banert K, Ray D, Saha B. Org. Biomol. Chem. 2019; 17: 10245
- 8a Dou Y, Xie Z, Sun Z, Fang H, Shen C, Zhang P, Zhu Q. ChemCatChem 2016; 8: 3570
- 8b Whiteoak CJ, Planas O, Company A, Ribas X. Adv. Synth. Catal. 2016; 358: 1679
- 8c Zhu X, Qiao L, Ye P, Ying B, Xu J, Shen C, Zhang P. RSC Adv. 2016; 6: 89979
- 8d Sahoo H, Reddy MK, Ramakrishna I, Baidya M. Chem. Eur. J. 2016; 22: 1592
- 8e He Y, Zhao N, Qiu L, Zhang X, Fan X. Org. Lett. 2016; 18: 6054
- 8f Yin Y, Xie J, Huang F.-Q, Qi L.-W, Zhang B. Adv. Synth. Catal. 2017; 359: 1037
- 8g Xia H, An Y, Zeng X, Wu J. Chem. Commun. 2017; 53: 12548
- 8h Yi H, Chen H, Bian C, Tang Z, Singh AK, Qi X, Yur X, Lan Y, Lee J.-F, Lei A. Chem. Commun. 2017; 53: 6736
- 8i Khan B, Khan AA, Bora D, Verma D, Koley D. ChemistrySelect 2017; 2: 260
- 9a Chen H, Li P, Wang M, Wang L. Org. Lett. 2016; 18: 4794
- 9b Kuninobu Y, Nishi M, Kanai M. Org. Biomol. Chem. 2016; 14: 8092
- 9c Jin L.-K, Lu G.-P, Cai C. Org. Chem. Front. 2016; 3: 1309
- 9d Han S, Liang A, Ren X, Gao X, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2017; 58: 4859
- 9e Chen C, Zeng R, Zhang J, Zhao Y. Eur. J. Org. Chem. 2017; 6947
- 9f Suo J.-F, Zhao X.-M, Zhang K.-X, Zhou S.-L, Niu J.-L, Song M.-P. Synthesis 2017; 49: 3916
- 9g Mondal S, Hajra A. Org. Biomol. Chem. 2018; 16: 2846
- 9h Jin C, Zhu R, Sun B, Zhang L, Zhuang X, Yu C. Asian J. Org. Chem. 2019; 8: 2213
- 10 Cong X, Zeng X. Org. Lett. 2014; 16: 3716
- 11 Reddy MD, Fronczek FR, Watkins EB. Org. Lett. 2016; 18: 5620
- 12 Cui M, Liu J.-H, Lu X.-Y, Lu X, Zhang Z.-Q, Xiao B, Fu Y. Tetrahedron Lett. 2017; 58: 1912
- 13 Niu T.-J, Xu J.-D, Ren B.-Z, Liu J.-H, Hu G.-Q. ChemistrySelect 2019; 4: 4682
- 14 See also: Ramesh B, Jeganmohan M. Org. Lett. 2017; 19: 6000
- 15a Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 15b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
- 15c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 15d Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 15e Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 15f Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 15g Kozlowski MC. Acc. Chem. Res. 2017; 50: 638
- 15h Huang CY, Kang H, Li J, Li CJ. J. Org. Chem. 2019; 84: 12705
- 16a Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
- 16b Zhang Y, Li C.-J. Eur. J. Org. Chem. 2007; 4654
- 16c Tanaka T, Hashiguchi K, Tanaka T, Yazaki R, Ohshima T. ACS Catal. 2018; 8: 8430
- 17a Huang C.-Y, Li J, Liu W, Li C.-J. Chem. Sci. 2019; 10: 5018
- 17b Tian H, Yang H, Tian C, An G, Li G. Org. Lett. 2020; 22: 7709
- 18a Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4688
- 18b Deb A, Bag S, Kancherla R, Maiti D. J. Am. Chem. Soc. 2014; 136: 13602
- 19 Hintermann L, Xiao L, Labonne A. Angew. Chem. Int. Ed. 2008; 47: 8246
Selected examples:
Selected examples:
Selected examples:
Selected examples:
Selected examples: