Synthesis 2021; 53(17): 3081-3084
DOI: 10.1055/a-1368-7072
special topic
Bond Activation – in Honor of Prof. Shinji Murai

One-Shot Deprotonative Metalation/Transmetalation/Polymerization of Halothiophenes Catalyzed by Nickel Complex for Polythiophene Synthesis

Sonoka Yamamoto
a   Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan   amori@kobe-u.ac.jp
,
Yushin Shibuya
a   Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan   amori@kobe-u.ac.jp
,
Toyoko Suzuki
a   Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan   amori@kobe-u.ac.jp
,
a   Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan   amori@kobe-u.ac.jp
,
Masaki Horie
b   Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
,
Atsunori Mori
a   Department of Chemical Science and Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan   amori@kobe-u.ac.jp
c   Research Center for Membrane Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
› Author Affiliations
This work was partly supported by Kakenhi B (JP19182273) by MEXT, Cooperative Research Program of ‘Network Joint Research Center for Materials and Devices’, and Kobe University for the promotion of international collaboration researches.


Abstract

Effect of divalent metals was studied in the cross-coupling polymerization of thiophenes leading to head-to-tail-type poly-3-hexyl­thiophene. Deprotonation of the C–H bond at the 5-position of 2-halo-3-hexylthiophene by LDA followed by metal exchange was carried out in one pot and following addition of nickel catalyst underwent polymerization. One-shot reaction involving deprotonation/transmetalation/ cross coupling polymerization was also examined with manganese(II) chloride and nickel(II) catalyst.

Supporting Information



Publication History

Received: 25 December 2020

Accepted after revision: 21 January 2021

Accepted Manuscript online:
21 January 2021

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sirringhaus H, Tessler N, Friend RH. Science 1998; 280: 1741
    • 1b Cho KY, Kim HJ, Do XH, Seo JY, Hwang SS, Choi DH, Baek KY. Compos. Sci. Technol. 2019; 174: 149
    • 1c Osaka I, McCullough RD. Acc. Chem. Res. 2008; 41: 1202
    • 1d Bao Z, Dodabalapur A, Lovinger AJ. Appl. Phys. Lett. 1996; 69: 4108
    • 3a Mori A. J. Synth. Org. Chem. Jpn. 2011; 69: 1202
    • 3b Shibuya Y, Mori A. Chem. Eur. J. 2020; 26: 6976
    • 3c Mori A. Bull. Chem. Soc. Jpn. 2020; 93: 1200
    • 4a Loewe RS, Khersonsky SM, McCullough RD. Adv. Mater. 1999; 11: 250
    • 4b Yokoyama A, Miyakoshi R, Yokozawa T. Macromolecules 2004; 37: 1169
    • 4c Kiriy A, Senkovskyy V, Sommer M. Macromol. Chem. Rapid Commun. 2011; 32: 1503
    • 4d Bronstein HA, Luscombe CK. J. Am. Chem. Soc. 2009; 131: 12894
    • 4e Ye S, Foster SM, Pollit AA, Cheng S, Seferos DS. Chem. Sci. 2019; 10: 2075
    • 5a Tamba S, Tanaka S, Okubo Y, Meguro H, Okamoto S, Mori A. Chem. Lett. 2011; 40: 398
    • 5b Tamba S, Mitsuda S, Tanaka F, Sugie A, Mori A. Organometallics 2012; 31: 2263
    • 5c Tamba S, Fuji K, Meguro H, Okamoto S, Tendo T, Komobuchi R, Sugie A, Nishino T, Mori A. Chem. Lett. 2013; 42: 281
    • 5d Murakami K, Tanaka S, Mori A. Polym. Chem. 2015; 6: 6573
    • 5e Fujita K, Sumino Y, Ide K, Tamba S, Shono K, Shen J, Nishino T, Mori A, Yasuda T. Macromolecules 2016; 49: 1259
    • 5f Ogura T, Kubota C, Suzuki T, Okano K, Tanaka N, Matsumoto T, Nishino T, Mori A, Okita T, Funahashi M. Chem. Lett. 2019; 48: 611
    • 5g Shibuya Y, Nakagawa N, Miyagawa N, Suzuki T, Okano K, Mori A. Angew. Chem. Int. Ed. 2019; 58: 9547
    • 5h Mori A, Kubota C, Fujita K, Hayashi M, Ogura T, Suzuki T, Okano K, Funahashi M, Horie M. Macromolecules 2020; 53: 1171
    • 6a Iraqi A, Barker GW. J. Mater. Chem. 1998; 8: 25
    • 6b Guillerez S, Bidan G. Synth. Met. 1998; 93: 123
    • 6c Wang Q, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc. 2010; 132: 11420
    • 6d Bonillo B, Swager TM. J. Am. Chem. Soc. 2012; 134: 18916
    • 7a Chen TA, Rieke RD. J. Am. Chem. Soc. 1992; 114: 10087
    • 7b Chen TA, Wu XM, Rieke RD. J. Am. Chem. Soc. 1995; 117: 233
    • 8a McCullough RD, Lowe RD. J. Chem. Soc., Chem. Commun. 1992; 70
    • 8b Higashihara T, Goto E, Ueda M. ACS Macro Lett. 2012; 1: 167
    • 9a Fuji K, Tamba S, Shono K, Sugie A, Mori A. J. Am. Chem. Soc. 2013; 135: 12208
    • 9b Shono K, Sumino Y, Tanaka S, Tamba S, Mori A. Org. Chem. Front. 2014; 1: 678
    • 9c Westerhausen M. Coord. Chem. Rev. 2008; 252: 1516
    • 10a Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
    • 10b Brikci-Nigassa N, Bentabed-Ababsa G, Erb W, Mongin F. Synthesis 2018; 50: 3615
  • 11 SEC analysis suggested the formation of a small amount of high-molecular-weight of polymer, which has also been observed in the Murahashi coupling polymerization (ref. 9). See also Supporting Information.
    • 12a Tsubogo T, Yamashita Y, Kobayashi S. Chem. Eur. J. 2012; 18: 13624
    • 12b Wilson AS. S, Hill MS, Mahon MF, Dinoi C, Maron L. Science 2017; 358: 1168
  • 13 Miyoshi N, Kimura S, Kubo S, Ohmura SD, Ueno M. Asian J. Org. Chem. 2020; 9: 1660
  • 14 Yanagisawa A, Habaue S, Yasue K, Yamamoto H. J. Am. Chem. Soc. 1994; 116: 6130
    • 15a Hojo M, Harada H, Ito H, Hosomi A. J. Am. Chem. Soc. 1997; 119: 5459
    • 15b Oshima K. J. Organomet. Chem. 1999; 575: 1
    • 15c Concellón JM, Rodríguez-Solla H, Del Amo V. Chem. Eur. J. 2008; 14: 10184
    • 15d See also: Rieke R. Patent WO 2007146074 A1, 2007
  • 16 Tamba S, Shono K, Sugie A, Mori A. J. Am. Chem. Soc. 2011; 133: 9700
  • 17 Hayashi Y. Chem. Sci. 2016; 7: 866
  • 18 Inoue R, Yamaguchi M, Murakami Y, Okano K, Mori A. ACS Omega 2018; 3: 12703