Synlett 2021; 32(09): 901-904
DOI: 10.1055/a-1385-2385
letter

(3+2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Thiocyanate: A Facile and Efficient Synthesis of 2-Amino-4,5-dihydrothiophenes

Anu Jacob
a   Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
,
Philip Barkawitz
a   Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
,
Ivan A. Andreev
b   Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, 117997 Moscow, Russian Federation
c   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russian Federation
,
Nina K. Ratmanova
b   Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, 117997 Moscow, Russian Federation
,
Igor V. Trushkov
b   Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, 117997 Moscow, Russian Federation
c   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russian Federation
,
Daniel B. Werz
a   Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
› Author Affiliations
A DAAD fellowship to A.J. is gratefully acknowledged.


Abstract

An easy and efficient route to obtain 2-amino-4,5-dihydrothiophenes is presented. A formal (3+2)-cycloaddition of donor–acceptor cyclopropanes and ammonium thiocyanate catalyzed by Yb(OTf)3 delivers the desired products in good to excellent yields. A broad range of functional groups is tolerated during this process.

Supporting Information



Publication History

Received: 21 January 2021

Accepted after revision: 07 February 2021

Accepted Manuscript online:
07 February 2021

Article published online:
05 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Wenkert E, Alonso ME, Buckwalter BL, Chou KJ. J. Am. Chem. Soc. 1977; 99: 4778
    • 2b Piers E, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1979; 18: 791
    • 2c Reissig H.-U, Hirsch E. Angew. Chem., Int. Ed. Engl. 1980; 19: 813
    • 2d Brückner C, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1985; 24: 588
    • 2e Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
  • 3 Gharpure SJ, Nanda LN. Tetrahedron Lett. 2017; 58: 711
    • 4a Lifchits O, Charette AB. Org. Lett. 2008; 10: 2809
    • 4b Wales SM, Walker MM, Johnson JS. Org. Lett. 2013; 15: 2558
    • 4c de Nanteuil F, Loup J, Waser J. Org. Lett. 2013; 15: 3738
    • 4d Garve LK. B, Barkawitz P, Jones PG, Werz DB. Org. Lett. 2014; 16: 5804
    • 4e Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY. Chem. Eur. J. 2015; 21: 4975
    • 4f Xia Y, Lin L, Chang F, Fu X, Liu X, Feng X. Angew. Chem. Int. Ed. 2015; 54: 13748
    • 4g Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061
    • 4h Das S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 5576
    • 4i Garve LK. B, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 9226
    • 4j Lücht A, Patalag LJ, Augustin AU, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 10587
    • 4k Wallbaum J, Garve LK. B, Jones PG, Werz DB. Org. Lett. 2017; 19: 98
    • 4l Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2017; 56: 11554
    • 4m Ivanov KL, Bezzubov SI, Melnikov MY, Budynina EM. Org. Biomol. Chem. 2018; 16: 3897
    • 4n Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2018; 57: 4053
    • 4o Richmond E, Vuković VD, Moran J. Org. Lett. 2018; 20: 574
    • 4p Augustin AU, Jones PG, Werz DB. Chem. Eur. J. 2019; 25: 11620
    • 4q Lücht A, Sobottka S, Patalag LJ, Jones PG, Reissig H.-U, Sarkar B, Werz DB. Chem. Eur. J. 2019; 25: 10359
    • 4r Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
    • 4s Boichenko MA, Andreev IA, Chagarovskiy AO, Levina II, Zhokhov SS, Trushkov IV, Ivanova OA. J. Org. Chem. 2020; 85: 1146
    • 5a Schneider TF, Kaschel J, Awan SI, Dittrich B, Werz DB. Chem. Eur. J. 2010; 16: 11276
    • 5b Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB. Angew. Chem. Int. Ed. 2012; 51: 11153
    • 5c Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB. Chem. Commun. 2013; 49: 4403
    • 5d Schmidt CD, Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB. Org. Lett. 2013; 15: 6098
    • 5e Shim SY, Choi Y, Ryu DH. J. Am. Chem. Soc. 2018; 140: 11184
    • 5f Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
    • 5g Ortega A, Manzano R, Uria U, Carrillo L, Reyes E, Tejero T, Merino P, Vicario JL. Angew. Chem. Int. Ed. 2018; 57: 8225
    • 5h Lücht A, Jones PG, Werz DB. Eur. J. Org. Chem. 2019; 5254
    • 6a Ivanova OA, Budynina EM, Chagarovskiy AO, Kaplun AE, Trushkov IV, Melnikov MY. Adv. Synth. Catal. 2011; 353: 1125
    • 6b Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
    • 6c Budynina EM, Ivanova OA, Chagarovskiy AO, Grishin YK, Trushkov IV, Melnikov MY. J. Org. Chem. 2015; 80: 12212
    • 6d Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
    • 6e Dey R, Banerjee P. Org. Lett. 2017; 19: 304
    • 6f Blom J, Vidal-Albalat A, Jørgensen J, Barløse CL, Jessen KS, Iversen MV, Jørgensen KA. Angew. Chem. Int. Ed. 2017; 56: 11831
    • 6g Ahlburg NL, Jones PG, Werz DB. Org. Lett. 2020; 22: 6404
    • 7a Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
    • 7b Benfatti F, de Nanteuil F, Waser J. Chem. Eur. J. 2012; 18: 4844
    • 7c Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780
    • 7d Kreft A, Jones PG, Werz DB. Org. Lett. 2018; 20: 2059
    • 8a Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
    • 8b Jackson SK, Karadeolian A, Driega AB, Kerr MA. J. Am. Chem. Soc. 2008; 130: 4196
    • 8c Parsons AT, Smith AG, Neel AJ, Johnson JS. J. Am. Chem. Soc. 2010; 132: 9688
    • 8d Wang DC, Xie MS, Guo HM, Qu GR, Zhang MC, You SL. Angew. Chem. Int. Ed. 2016; 55: 14111
    • 8e Preindl J, Chakrabarty S, Waser J. Chem. Sci. 2017; 8: 7112
    • 9a Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023
    • 9b Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764
    • 9c Kang YB, Sun XL, Tang Y. Angew. Chem. Int. Ed. 2007; 46: 3918
    • 10a Yadav VK, Sriramurthy V. Angew. Chem. Int. Ed. 2004; 43: 2669
    • 10b Rakhmankulov ER, Ivanov KL, Budynina EM, Ivanova OA, Chagarovskiy AO, Skvortsov DA, Latyshev GV, Trushkov IV, Melnikov MY. Org. Lett. 2015; 17: 770
    • 10c Racine S, Hegedüs B, Scopelliti R, Waser J. Chem. Eur. J. 2016; 22: 11997
    • 11a Goldberg AF. G, O’Connor NR, Craig RA. II, Stoltz BM. Org. Lett. 2012; 14: 5314
    • 11b Sun Y, Yang G, Chai Z, Mu X, Chai J. Org. Biomol. Chem. 2013; 11: 7859
    • 11c Gladow D, Reissig H.-U. J. Org. Chem. 2014; 79: 4492
    • 12a Lebold TP, Leduc AB, Kerr MA. Org. Lett. 2009; 11: 3770
    • 12b Xu H, Hu JL, Wang L, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 8006
    • 12c Su Z, Qian S, Xue S, Wang C. Org. Biomol. Chem. 2017; 15: 7878
    • 12d Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
    • 13a Gewald K, Schinke E, Böttcher H. Chem. Ber. 1966; 99: 94
    • 13b Furukuwa M, Nagato K, Kojima Y, Hayashi S. Chem. Pharm. Bull. 1972; 20: 2262
    • 13c Hesse S, Perspicace E, Kirsch G. Tetrahedron Lett. 2007; 48: 5261
    • 13d Huang Y, Dömling A. Mol. Diversity 2011; 15: 3
    • 13e Adib M, Soheilizad M, Daryasaraei SR, Mirzaei P. Synlett 2015; 26: 1101
    • 13f Suzuki I, Sakamoto Y, Seo Y, Ninomaru Y, Tokuda K, Shibata I. J. Org. Chem. 2020; 85: 2759
    • 14a Meltzer HY, Fibiger HC. Neuropsychopharmacology 1996; 14: 83
    • 14b Li X, Conklin D, Pan HL, Eisenach JC. J. Pharmacol. Exp. Ther. 2003; 305: 950
    • 14c Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J. Science 2004; 304: 1800
    • 14d Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, Mellor GW, Evans C, Roshak AK. J. Pharmacol. Exp. Ther. 2005; 312: 373
    • 14e Kalariya PD, Patel PN, Kavya P, Sharma M, Garg P, Srinivas R, Talluri MV. N. K. J. Mass Spectrom. 2015; 50: 1222
  • 15 Gopinath P, Chandrasekaran S. J. Org. Chem. 2011; 76: 700
  • 16 Sathishkannan G, Srinivasan K. Chem. Commun. 2014; 50: 4062
    • 17a Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
    • 17b Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2018; 20: 820
  • 18 Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. Chem. Eur. J. 2018; 24: 6062
  • 19 Xie M.-S, Zhao G.-F, Qin T, Suo Y.-B, Qu G.-R, Guo H.-M. Chem. Commun. 2019; 55: 1580
  • 20 Jacob A, Jones PG, Werz DB. Org. Lett. 2020; 22: 8720
  • 21 Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202016593.
  • 22 General Procedure for the Preparation of 2-Amino-dihydrothiophenes (3) Cyclopropane diester 1 (100 μmol, 1.00 equiv), ammonium thiocyanate 2 (200 μmol, 2.00 equiv), and ytterbium triflate (19 mg, 30.0 μmol, 0.30 equiv were dissolved in THF (1 mL). The solution was stirred at 75 °C for 12 h. The solvent was removed, and the residue was purified by flash column chromatography. Methyl 2-Amino-5-(4-chlorophenyl)-4,5-dihydrothiophene-3-carboxylate (3c) Colorless solid; yield 50%; mp 146 °C. 1H NMR (500 MHz, CDCl3): δ = 7.36–7.33 (m, 2 H), 7.31–7.27 (m, 2 H), 6.08 (s, 2 H), 4.79 (dd, J = 8.5, 6.9 Hz, 1 H), 3.69 (s, 3 H), 3.40 (dd, J = 14.3, 8.5 Hz, 1 H), 3.10 (dd, J = 14.2, 6.9 Hz, 1 H). 13C NMR (156 MHz, CDCl3): δ = 166.5, 161.9, 140.2, 133.5, 128.8, 128.4, 90.4, 50.5, 50.4, 41.4. HRMS (ESI): m/z calcd for C12H12ClNO2S [M + Na]: 292.0175; found: 292.0172. Methyl 2-Amino-5-(p-tolyl)-4,5-dihydrothiophene-3-carboxylate (3e) Colorless solid; yield 68%; mp 100 °C. 1H NMR (500 MHz, CDCl3): δ = 7.30 (d, J = 8.2 Hz, 2 H), 7.15–7.10 (m, 2 H), 6.06 (s, 2 H), 4.83 (t, J = 8.0 Hz, 1 H), 3.68 (s, 3 H), 3.37 (dd, J = 14.2, 8.5 Hz, 1 H), 3.14 (dd, J = 14.2, 7.6 Hz, 1 H), 2.33 (s, 3 H). 13C NMR (156 MHz, CDCl3): δ = 166.6, 162.3, 138.4, 137.5, 129.3, 127.0, 90.8, 51.3, 50.4, 41.4, 21.0. HRMS (ESI): m/z calcd for C13H15NO2S [M + Na]: 272.0721; found: 272.0717.