Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(09): 901-904
DOI: 10.1055/a-1385-2385
DOI: 10.1055/a-1385-2385
letter
(3+2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Thiocyanate: A Facile and Efficient Synthesis of 2-Amino-4,5-dihydrothiophenes
A DAAD fellowship to A.J. is gratefully acknowledged.
Abstract
An easy and efficient route to obtain 2-amino-4,5-dihydrothiophenes is presented. A formal (3+2)-cycloaddition of donor–acceptor cyclopropanes and ammonium thiocyanate catalyzed by Yb(OTf)3 delivers the desired products in good to excellent yields. A broad range of functional groups is tolerated during this process.
Key words
D–A cyclopropanes - dihydrothiophenes - Lewis acid catalysis - thiocyanate - cycloadditionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1385-2385.
- Supporting Information
Publication History
Received: 21 January 2021
Accepted after revision: 07 February 2021
Accepted Manuscript online:
07 February 2021
Article published online:
05 March 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 1b Agrawal D, Yadav VK. Chem. Commun. 2008; 6471
- 1c Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 1d Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 1e Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
- 1f Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 1g Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
- 1h Xia Y, Liu X, Feng X. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202006736.
- 2a Wenkert E, Alonso ME, Buckwalter BL, Chou KJ. J. Am. Chem. Soc. 1977; 99: 4778
- 2b Piers E, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1979; 18: 791
- 2c Reissig H.-U, Hirsch E. Angew. Chem., Int. Ed. Engl. 1980; 19: 813
- 2d Brückner C, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1985; 24: 588
- 2e Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
- 3 Gharpure SJ, Nanda LN. Tetrahedron Lett. 2017; 58: 711
- 4a Lifchits O, Charette AB. Org. Lett. 2008; 10: 2809
- 4b Wales SM, Walker MM, Johnson JS. Org. Lett. 2013; 15: 2558
- 4c de Nanteuil F, Loup J, Waser J. Org. Lett. 2013; 15: 3738
- 4d Garve LK. B, Barkawitz P, Jones PG, Werz DB. Org. Lett. 2014; 16: 5804
- 4e Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY. Chem. Eur. J. 2015; 21: 4975
- 4f Xia Y, Lin L, Chang F, Fu X, Liu X, Feng X. Angew. Chem. Int. Ed. 2015; 54: 13748
- 4g Kaicharla T, Roy T, Thangaraj M, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 10061
- 4h Das S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 5576
- 4i Garve LK. B, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 9226
- 4j Lücht A, Patalag LJ, Augustin AU, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 10587
- 4k Wallbaum J, Garve LK. B, Jones PG, Werz DB. Org. Lett. 2017; 19: 98
- 4l Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2017; 56: 11554
- 4m Ivanov KL, Bezzubov SI, Melnikov MY, Budynina EM. Org. Biomol. Chem. 2018; 16: 3897
- 4n Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2018; 57: 4053
- 4o Richmond E, Vuković VD, Moran J. Org. Lett. 2018; 20: 574
- 4p Augustin AU, Jones PG, Werz DB. Chem. Eur. J. 2019; 25: 11620
- 4q Lücht A, Sobottka S, Patalag LJ, Jones PG, Reissig H.-U, Sarkar B, Werz DB. Chem. Eur. J. 2019; 25: 10359
- 4r Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
- 4s Boichenko MA, Andreev IA, Chagarovskiy AO, Levina II, Zhokhov SS, Trushkov IV, Ivanova OA. J. Org. Chem. 2020; 85: 1146
- 5a Schneider TF, Kaschel J, Awan SI, Dittrich B, Werz DB. Chem. Eur. J. 2010; 16: 11276
- 5b Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB. Angew. Chem. Int. Ed. 2012; 51: 11153
- 5c Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB. Chem. Commun. 2013; 49: 4403
- 5d Schmidt CD, Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB. Org. Lett. 2013; 15: 6098
- 5e Shim SY, Choi Y, Ryu DH. J. Am. Chem. Soc. 2018; 140: 11184
- 5f Ivanova OA, Chagarovskiy AO, Shumsky AN, Krasnobrov VD, Levina II, Trushkov IV. J. Org. Chem. 2018; 83: 543
- 5g Ortega A, Manzano R, Uria U, Carrillo L, Reyes E, Tejero T, Merino P, Vicario JL. Angew. Chem. Int. Ed. 2018; 57: 8225
- 5h Lücht A, Jones PG, Werz DB. Eur. J. Org. Chem. 2019; 5254
- 6a Ivanova OA, Budynina EM, Chagarovskiy AO, Kaplun AE, Trushkov IV, Melnikov MY. Adv. Synth. Catal. 2011; 353: 1125
- 6b Zhu W, Fang J, Liu Y, Ren J, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
- 6c Budynina EM, Ivanova OA, Chagarovskiy AO, Grishin YK, Trushkov IV, Melnikov MY. J. Org. Chem. 2015; 80: 12212
- 6d Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
- 6e Dey R, Banerjee P. Org. Lett. 2017; 19: 304
- 6f Blom J, Vidal-Albalat A, Jørgensen J, Barløse CL, Jessen KS, Iversen MV, Jørgensen KA. Angew. Chem. Int. Ed. 2017; 56: 11831
- 6g Ahlburg NL, Jones PG, Werz DB. Org. Lett. 2020; 22: 6404
- 7a Pohlhaus PD, Sanders SD, Parsons AT, Li W, Johnson JS. J. Am. Chem. Soc. 2008; 130: 8642
- 7b Benfatti F, de Nanteuil F, Waser J. Chem. Eur. J. 2012; 18: 4844
- 7c Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780
- 7d Kreft A, Jones PG, Werz DB. Org. Lett. 2018; 20: 2059
- 8a Carson CA, Kerr MA. J. Org. Chem. 2005; 70: 8242
- 8b Jackson SK, Karadeolian A, Driega AB, Kerr MA. J. Am. Chem. Soc. 2008; 130: 4196
- 8c Parsons AT, Smith AG, Neel AJ, Johnson JS. J. Am. Chem. Soc. 2010; 132: 9688
- 8d Wang DC, Xie MS, Guo HM, Qu GR, Zhang MC, You SL. Angew. Chem. Int. Ed. 2016; 55: 14111
- 8e Preindl J, Chakrabarty S, Waser J. Chem. Sci. 2017; 8: 7112
- 9a Young IS, Kerr MA. Angew. Chem. Int. Ed. 2003; 42: 3023
- 9b Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 5764
- 9c Kang YB, Sun XL, Tang Y. Angew. Chem. Int. Ed. 2007; 46: 3918
- 10a Yadav VK, Sriramurthy V. Angew. Chem. Int. Ed. 2004; 43: 2669
- 10b Rakhmankulov ER, Ivanov KL, Budynina EM, Ivanova OA, Chagarovskiy AO, Skvortsov DA, Latyshev GV, Trushkov IV, Melnikov MY. Org. Lett. 2015; 17: 770
- 10c Racine S, Hegedüs B, Scopelliti R, Waser J. Chem. Eur. J. 2016; 22: 11997
- 11a Goldberg AF. G, O’Connor NR, Craig RA. II, Stoltz BM. Org. Lett. 2012; 14: 5314
- 11b Sun Y, Yang G, Chai Z, Mu X, Chai J. Org. Biomol. Chem. 2013; 11: 7859
- 11c Gladow D, Reissig H.-U. J. Org. Chem. 2014; 79: 4492
- 12a Lebold TP, Leduc AB, Kerr MA. Org. Lett. 2009; 11: 3770
- 12b Xu H, Hu JL, Wang L, Liao S, Tang Y. J. Am. Chem. Soc. 2015; 137: 8006
- 12c Su Z, Qian S, Xue S, Wang C. Org. Biomol. Chem. 2017; 15: 7878
- 12d Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
- 13a Gewald K, Schinke E, Böttcher H. Chem. Ber. 1966; 99: 94
- 13b Furukuwa M, Nagato K, Kojima Y, Hayashi S. Chem. Pharm. Bull. 1972; 20: 2262
- 13c Hesse S, Perspicace E, Kirsch G. Tetrahedron Lett. 2007; 48: 5261
- 13d Huang Y, Dömling A. Mol. Diversity 2011; 15: 3
- 13e Adib M, Soheilizad M, Daryasaraei SR, Mirzaei P. Synlett 2015; 26: 1101
- 13f Suzuki I, Sakamoto Y, Seo Y, Ninomaru Y, Tokuda K, Shibata I. J. Org. Chem. 2020; 85: 2759
- 14a Meltzer HY, Fibiger HC. Neuropsychopharmacology 1996; 14: 83
- 14b Li X, Conklin D, Pan HL, Eisenach JC. J. Pharmacol. Exp. Ther. 2003; 305: 950
- 14c Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J. Science 2004; 304: 1800
- 14d Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, Mellor GW, Evans C, Roshak AK. J. Pharmacol. Exp. Ther. 2005; 312: 373
- 14e Kalariya PD, Patel PN, Kavya P, Sharma M, Garg P, Srinivas R, Talluri MV. N. K. J. Mass Spectrom. 2015; 50: 1222
- 15 Gopinath P, Chandrasekaran S. J. Org. Chem. 2011; 76: 700
- 16 Sathishkannan G, Srinivasan K. Chem. Commun. 2014; 50: 4062
- 17a Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
- 17b Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2018; 20: 820
- 18 Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. Chem. Eur. J. 2018; 24: 6062
- 19 Xie M.-S, Zhao G.-F, Qin T, Suo Y.-B, Qu G.-R, Guo H.-M. Chem. Commun. 2019; 55: 1580
- 20 Jacob A, Jones PG, Werz DB. Org. Lett. 2020; 22: 8720
- 21 Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202016593.
- 22 General Procedure for the Preparation of 2-Amino-dihydrothiophenes (3) Cyclopropane diester 1 (100 μmol, 1.00 equiv), ammonium thiocyanate 2 (200 μmol, 2.00 equiv), and ytterbium triflate (19 mg, 30.0 μmol, 0.30 equiv were dissolved in THF (1 mL). The solution was stirred at 75 °C for 12 h. The solvent was removed, and the residue was purified by flash column chromatography. Methyl 2-Amino-5-(4-chlorophenyl)-4,5-dihydrothiophene-3-carboxylate (3c) Colorless solid; yield 50%; mp 146 °C. 1H NMR (500 MHz, CDCl3): δ = 7.36–7.33 (m, 2 H), 7.31–7.27 (m, 2 H), 6.08 (s, 2 H), 4.79 (dd, J = 8.5, 6.9 Hz, 1 H), 3.69 (s, 3 H), 3.40 (dd, J = 14.3, 8.5 Hz, 1 H), 3.10 (dd, J = 14.2, 6.9 Hz, 1 H). 13C NMR (156 MHz, CDCl3): δ = 166.5, 161.9, 140.2, 133.5, 128.8, 128.4, 90.4, 50.5, 50.4, 41.4. HRMS (ESI): m/z calcd for C12H12ClNO2S [M + Na]: 292.0175; found: 292.0172. Methyl 2-Amino-5-(p-tolyl)-4,5-dihydrothiophene-3-carboxylate (3e) Colorless solid; yield 68%; mp 100 °C. 1H NMR (500 MHz, CDCl3): δ = 7.30 (d, J = 8.2 Hz, 2 H), 7.15–7.10 (m, 2 H), 6.06 (s, 2 H), 4.83 (t, J = 8.0 Hz, 1 H), 3.68 (s, 3 H), 3.37 (dd, J = 14.2, 8.5 Hz, 1 H), 3.14 (dd, J = 14.2, 7.6 Hz, 1 H), 2.33 (s, 3 H). 13C NMR (156 MHz, CDCl3): δ = 166.6, 162.3, 138.4, 137.5, 129.3, 127.0, 90.8, 51.3, 50.4, 41.4, 21.0. HRMS (ESI): m/z calcd for C13H15NO2S [M + Na]: 272.0721; found: 272.0717.