Laryngorhinootologie 2022; 101(03): 216-227
DOI: 10.1055/a-1399-9540
Originalarbeit

Neurophysiologische Parameter zum Sprachverstehen von Patienten mit Cochlea-Implantaten

Neurophysiological parameters for speech recognition in patients with cochlear implants
Robert Ernst
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Maximilian Linxweiler
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Katharina Anna Rink
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Heike Rothe
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Gregory Lecomte
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Alessandro Bozzato
1   Hals-, Nasen- und Ohrenklinik, Universitätsklinikum des Saarlandes, Homburg, Germany
,
Dietmar Hecker
2   Klinik für Hals-, Nasen- und Ohrenheilkunde, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
› Author Affiliations

Zusammenfassung

Hintergrund Cochlea-Implantate (CI) stellen heutzutage die Behandlungsmethode der Wahl für schwerhörige bis vollständig ertaubte PatientInnen dar. Während für gehörlose PatientInnen bereits die Wiederherstellung eines basalen Höreindrucks einen enormen Erfolg darstellt, ist das Treffen von Vorhersagen für PatientInnen mit einem Restgehör oftmals komplexer. Im Rahmen dieser Studie soll anhand von erhobenen Daten der neurophysiologische Einfluss von objektiven Parametern beim klassifizierten Sprachverstehen (SPV) von CI-Trägern aufgezeigt werden.

Material und Methoden Insgesamt wurden 52 PatientInnen mit 65 Ohren im Alter von 18–80 Jahren eingeschlossen. Als objektive Parameter wurden ECAP-Schwellen und Impedanzwerte und als subjektive Parameter die T- und C/M-Werte genutzt. Klassifiziert wurden die Ergebnisse über die Performance des SPV.

Ergebnisse Die Unterschiede zwischen den Gruppen (Alter, Tragedauer) waren nicht signifikant, wobei das erreichte Hörvermögen bei 500 Hz signifikant mit dem Mehrsilbertest korrelierte. Die Elektrodenimpedanzen korrelierten im Mittel mit dem SPV bei gleichbleibender Variabilität. Die Verteilungen von objektiven und subjektiven Parametern zeigten zum Teil signifikante Unterschiede. Viele Verteilungen besaßen dabei signifikant auffällige Unterschiede zur Normalverteilung. Dementsprechend waren die Überlappungsbereiche der Signifikanzniveaus sehr eng begrenzt.

Schlussfolgerungen Höhere Impedanzen und nicht korrekt angepasste T-Werte ergaben ein schlechteres SPV. Die Verhältnisse von C/M-Werten zu den ECAP-Schwellen zeigten sich als wesentlich für ein gutes SPV.

Abstract

Objectives Cochlea Implants (CI) are the preferred treatment for deaf and highly hearing imparied people. While deaf people already profit enormously from any regained hearing perception, it is not as easy to predict a profitable outcome for people with a remaining sense of hearing. To provide patients the best possible outcome in speech understanding, a lot of parameters have to be identified and adjusted. The aim of this study is to show the influence of objective parameters on classified speech understanding using collected data.

Material and methods A total of 52 patients and 65 ears aged between 18 and 80 years were included in this study. ECAP-thresholds from intraoperative measurements and impedance were used as objective parameters. T- and C/M-levels were defined as subjective parameters. To classify the performance the value of speech understanding was used.

Results Differences between both groups (age, time after implantation) were not significant. The gained word scores at 500 Hz correlated significantly with the results of the speech perception threshold on two-digit numbers. The electrode impedances correlated on average with speech understanding with constant variability. The distributions of objective and subjective parameters showed partially significant differences. Many distributions showed significant differences to the normal distribution. Accordingly, the overlapping areas of the significance levels are very narrow.

Conclusion Higher impedances and incorrectly adjusted T-levels resulted in a worse speech understanding. Relation of C/M-levels to ECAP thresholds seem to be crucial for good speech understanding.



Publication History

Received: 27 January 2021

Accepted: 22 February 2021

Article published online:
09 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hoppe U, Hocke T, Hast A. et al. Cochlear Implantation in Candidates With Moderate‐to‐Severe Hearing Loss and Poor Speech Perception. The Laryngoscope 2020; 131 (03) 940-945
  • 2 Gifford RH, Dorman MF, Shallop JK. et al. Evidence for the expansion of adult cochlear implant candidacy. Ear and hearing 2010; 31 (02) 186
  • 3 Dowell RC. Evidence about the effectiveness of cochlear implants for adults. Evidence-Based Practice in Audiology 2012: 141-165
  • 4 Hughes ML, Neff DL, Simmons JL. et al. Performance outcomes for borderline cochlear implant recipients with substantial preoperative residual hearing. Otology & Neurotology 2014; 35 (08) 1373-1384
  • 5 Zwolan T, Kileny PR, Smith S. et al. Adult cochlear implant patient performance with evolving electrode technology. Otology & neurotology 2001; 22 (06) 844-849
  • 6 Hoppe U, Hocke T, Hast A. et al [Maximum monosyllabic score as a predictor for cochlear implant outcome], (in ger). HNO 2019; 67 (03) 199-206 . doi:10.1007/s00106-018-0605-3
  • 7 K.-u. H.-C. e. V. D.-K. Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde. S2k Leitlinie Cochlea-Implantat Versorgung. ed: AWMF 2020
  • 8 P. d. DGHNO. Weißbuch Cochlea Implantat CI-Versorgung. Empfehlungen zur Struktur, Organisation, Ausstattung, Qualifikation und Qualitätssicherung in der Versorgung von Patienten mit einem Cochlea-Implantat in der Bundesrepublik Deutschland. Bonn 2018: 1-34
  • 9 Clark JH, Yeagle J, Arbaje AI. et al Cochlear implant rehabilitation in older adults: literature review and proposal of a conceptual framework (in eng). J Am Geriatr Soc 2012; 60 (10) 1936-1945 . doi:10.1111/j.1532-5415.2012.04150.x
  • 10 Hast A, Schlücker L, Digeser F. et al Speech Perception of Elderly Cochlear Implant Users Under Different Noise Conditions (in eng). Otol Neurotol 2015; 36 (10) 1638-1643 . doi:10.1097/MAO.0000000000000883
  • 11 Orabi AA, Mawman D, Al-Zoubi F. et al Cochlear implant outcomes and quality of life in the elderly: Manchester experience over 13 years (in eng). Clin Otolaryngol 2006; 31 (02) 116-122 . doi:10.1111/j.1749-4486.2006.01156.x
  • 12 Baumann U, Eßer B, Wechtenbruch J. et al Sprachverstehen mit Cochlea Implantat bei Versorgung nach dem sechzigsten Lebensjahr. DGA Jahrestagung 2002 5.
  • 13 Blamey P, Artieres F, Başkent D. et al Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients (in eng). Audiol Neurootol 2013; 18 (01) 36-47 . doi:10.1159/000343189
  • 14 Oh SH, Kim CS, Kang EJ. et al Speech perception after cochlear implantation over a 4-year time period (in eng). Acta Otolaryngol 2003; 123 (02) 148-153 . doi:10.1080/0036554021000028111
  • 15 Antony Otero CI. Patienten Outcome bei ambulanter Therapie nach Cochlea-Implantation im Hinblick auf audiologische Ergebnisse und Angaben über den Inhalt der logopädischen Therapie. Universität Ulm 2019
  • 16 Holden LK, Finley CC, Firszt JB. et al Factors affecting open-set word recognition in adults with cochlear implants (in eng). Ear Hear 2013; 34 (03) 342-360 . doi:10.1097/AUD.0b013e3182741aa7
  • 17 Hoppe U, Hocke T, Müller A. et al Speech Perception and Information-Carrying Capacity for Hearing Aid Users of Different Ages (in eng). Audiol Neurootol 2016; 21 (Suppl. 01) 16-20 . doi:10.1159/000448349
  • 18 Olze H, Gräbel S, Förster U. et al Elderly patients benefit from cochlear implantation regarding auditory rehabilitation, quality of life, tinnitus, and stress. The Laryngoscope 2012; 122 (01) 196-203 . doi:10.1002/lary.22356
  • 19 Poissant SF, Beaudoin F, Huang J. et al Impact of cochlear implantation on speech understanding, depression, and loneliness in the elderly. Journal of Otolaryngology – Head & Neck Surgery 2008 37 (4).
  • 20 Jiang C, de Rijk S, Malliaras G. et al Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread. APL materials 2020; 8 (09) 091102 . doi:10.1063/5.00125148
  • 21 de Graaff F, Lissenberg-Witte B, Kaandorp MW. et al. Relationship Between Speech Recognition in Quiet and Noise and Fitting Parameters, Impedances and ECAP Thresholds in Adult Cochlear Implant Users. Ear and Hearing 2020; 41: 935-947
  • 22 van der Beek FB, Briaire JJ, Frijns JH. Population-based prediction of fitting levels for individual cochlear implant recipients (in eng). Audiol Neurootol 2015; 20 (01) 1-16 . doi:10.1159/000362779
  • 23 Berger K, Hocke T, Hessel H. [Loudness optimized registration of compound action potential in cochlear implant recipients] (in ger). Laryngo-Rhino-Otol 2017; 96 (11) 780-786 . doi: 10.1055/s-0043-119292
  • 24 Lai WK, Psarros C. Longitudinal ART/AutoART data: a retrospective analysis. Journal of Hearing Science 2018; 8: 376
  • 25 Firszt JB, Chambers RD, Kraus N. Neurophysiology of cochlear implant users II: comparison among speech perception, dynamic range, and physiological measures (in eng). Ear Hear 2002; 23 (06) 516-531 . doi:10.1097/00003446-200212000-00003
  • 26 Kawano A, Seldon HL, Clark GM. et al Intracochlear factors contributing to psychophysical percepts following cochlear implantation (in eng). Acta Otolaryngol 1998; 118a (03) 313-326 . doi:10.1080/00016489850183386
  • 27 Honda K, Yukawa K, Shiroma M. et al. Factors contributing to phoneme recognition ability of users of the 22-channel cochlear implant system. Los Angeles, CA: SAGE Publications Sage CA; 1992
  • 28 Zeng FG, Grant G, Niparko J. et al Speech dynamic range and its effect on cochlear implant performance (in eng). J Acoust Soc Am 2002; 111 (01) 377-386 . doi:10.1121/1.1423926
  • 29 Spahr AJ, Dorman MF, Loiselle LH. Performance of patients using different cochlear implant systems: effects of input dynamic range (in eng). Ear Hear 2007; 28 (02) 260-275 . doi:10.1097/AUD.0b013e3180312607
  • 30 Loizou PC, Dorman M, Fitzke J. The effect of reduced dynamic range on speech understanding: implications for patients with cochlear implants (in eng). Ear Hear 2000; 21 (01) 25-31 . doi:10.1097/00003446-200002000-00006
  • 31 Clark GM, Shute SA, Shepherd RK. et al. Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing. Annals of Otology, Rhinology & Laryngology 1995; 104: 40-42
  • 32 Itayem DA, Sladen D, Driscoll CL. et al Cochlear Implant Associated Labyrinthitis: A Previously Unrecognized Phenomenon With a Distinct Clinical and Electrophysiological Impedance Pattern (in eng). Otol Neurotol 2017; 38 (10) e445-e450 . doi:10.1097/MAO.0000000000001615
  • 33 Wolfe J, Schafer E, Neumann S. Basic components and operation of a cochlear implant. Programming cochlear implants 2015: 1-59
  • 34 Gu P, Jiang Y, Gao X. et al Effects of cochlear implant surgical technique on post-operative electrode impedance (in eng). Acta Otolaryngol 2016; 136 (07) 677-681 . doi:10.3109/00016489.2016.1143967
  • 35 Liberman MC. Central projections of auditory‐nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. Journal of Comparative Neurology 1991; 313 (02) 240-258
  • 36 Brown CJ, Hughes ML, Luk B. et al The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear 2000; 21 (02) 151-163 . doi:10.1097/00003446-200004000-00009. PMID: 10777022
  • 37 Koch DB, Overstreet EH. Neural Response Imaging: Measuring Auditory-Nerve Responses from the Cochlea with the HiResolution™ Bionic Ear System. Bengaluru: Advanced Bionics Corporation; 2003
  • 38 Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates (in eng). J Neurophysiol 2013; 110 (03) 577-586 . doi:10.1152/jn.00164.2013
  • 39 Kujawa SG, Liberman MC. Adding Insult to Injury: Cochlear Nerve Degeneration after „Temporary“ Noise-Induced Hearing Loss. The Journal of Neuroscience 2009; 29 (45) 14077-14085 . doi:10.1523/JNEUROSCI.2845
  • 40 Liberman MC. Central projections of auditory‐nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. Journal of Comparative Neurology 1991; 313 (02) 240-258
  • 41 Liberman MC. Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei (in eng). J Comp Neurol 1993; 327 (01) 17-36 . doi:10.1002/cne.903270103
  • 42 Euteneuer S, Praetorius M. Neues aus der Hörforschung. HNO 2014; 62 (02) 88-92 . doi:10.1007/s00106-013-2807-z
  • 43 Bewley M. Mining clinical databases: A post-hoc study of cochelar implant fitting practices. Cochlear White Paper 2013
  • 44 JFayad JN, Makarem AO, Linthicum FH. Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction (in eng). Otolaryngol Head Neck Surg 2009; 141 (02) 247-252 . doi:10.1016/j.otohns.2009.03.031
  • 45 Gordin A, Papsin B, Gordon K. Packing of the cochleostomy site affects auditory nerve response thresholds in precurved off-stylet cochlear implants (in eng). Otol Neurotol 2010; 31 (02) 204-209 . doi:10.1097/MAO.0b013e3181ca8457
  • 46 van der Beek FB, Boermans PP, Verbist BM. et al Clinical evaluation of the Clarion CII HiFocus 1 with and without positioner (in eng). Ear Hear 2005; 26 (06) 577-592 . doi:10.1097/01.aud.0000188116.30954.21
  • 47 Holden LK, Reeder RM, Firszt JB. et al Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system (in eng). Int J Audiol 2011; 50 (04) 255-269 . doi:10.3109/14992027.2010.533200
  • 48 „Oldenburger Satztest,“ in Bedienungsanleitung für den manuellen Test auf Audio-CD. HörTech gGmbH; 2011
  • 49 Lenarz T. [Cochlear Implant – State of the Art] (in ger). Laryngo-Rhino-Otol 2017; 96 (01) S123-S151 . doi:10.1055/s-0043-101812
  • 50 De Raeve L, Wouters A. Accessibility to cochlear implants in Belgium: state of the art on selection, reimbursement, habilitation, and outcomes in children and adults (in eng). Cochlear Implants Int 2013; 14 (Suppl. 01) S18-S25 . doi:10.1179/1467010013Z.00000000078