Zentralbl Chir 2021; 146(03): 277-282
DOI: 10.1055/a-1447-1259
Übersicht

Der Einfluss von Kachexie und Sarkopenie auf das postoperative Outcome

Sarcopenia and Cachexia-associated Risk in Surgery
Gregory van der Kroft
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Uniklinik RWTH Aachen, Deutschland
,
Steven W. M. Olde Damink
2   General- and Visceral Surgery, Maastricht UMC+, Maastricht, Niederlande
,
Ulf Peter Neumann
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Uniklinik RWTH Aachen, Deutschland
2   General- and Visceral Surgery, Maastricht UMC+, Maastricht, Niederlande
,
Andreas Lambertz
1   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Uniklinik RWTH Aachen, Deutschland
› Author Affiliations

Zusammenfassung

Kachexie wird als multifaktorielles Syndrom definiert, das durch einen unfreiwillig fortschreitenden Gewichtsverlust infolge einer Verringerung der Skelettmuskelmasse mit oder ohne Reduktion des Fettgewebes gekennzeichnet ist. Der Abbau von Muskelgewebe wird als Sarkopenie bezeichnet. Diese wird klinisch als Verlust von Muskelmasse und/oder Muskelkraft definiert, wobei der Verlust von Muskelkraft im Vordergrund steht. Mit Sarkopenie verbunden ist der Zustand der Myosteatose, der durch eine Zunahme der intra- und extrazellulären Fettspeicher gekennzeichnet ist und mit einer verminderten Muskelfunktion einhergeht. Kachexie ist für den Tod von mindestens 20% aller Krebspatienten mitverantwortlich. Die Inzidenz variiert bei diesen Patienten je nach Art der Erkrankung zwischen 80% für Patienten mit Magen- und Bauchspeicheldrüsenkrebs, 50% für Patienten mit Lungen-, Dickdarm- und Prostatakrebs sowie etwa 40% für Patienten mit Brustkrebs oder Leukämie. Hierbei ist eine Unterscheidung zwischen tumorassoziierter Kachexie und einer durch Nebenwirkungen und Komplikationen der onkologischen Therapie bedingten Kachexie oft schwierig. Das wesentliche klinische Merkmal der Kachexie ist ein unfreiwilliger Gewichtsverlust, der sich jedoch nicht immer klinisch manifestiert, sodass die Identifizierung von Risikopatienten erheblich erschwert ist. Nicht nur das Langzeit-Outcome der Patienten wird von Kachexie und Sarkopenie beeinflusst. Auch die unmittelbaren postoperativen Komplikationsraten (Morbidität) werden erhöht und haben tiefgreifende Auswirkungen auf die Krankheitslast und das Leiden der Patienten nach einer chirurgischen Behandlung. Kachexie, Sarkopenie und Myosteatose sind somit für den klinischen Alltag hochrelevante Parameter, die einen signifikanten Einfluss auf das postoperative Outcome der Patienten haben. Es wurden verschiedene Methoden entwickelt, um die frühzeitige Identifizierung von Patienten mit einem erhöhten Risiko zu verbessern. Diese bieten die Möglichkeit, ungewollten Gewichtsverlust, verringerte Muskelkraft und die Fitness der Patienten zu testen. Derartige Maßnahmen sollten Teil unserer täglichen klinischen Routine werden, um diejenigen Patienten mit dem höchsten postoperativen Risiko zu erkennen. Entsprechend können neuartige Präkonditionierungskonzepte für bestimmte Patientengruppen in der Lage sein, die postoperative Morbidität zu verringern.

Abstract

Cachexia is defined as a multifactorial syndrome characterised by involuntary progressive weight loss due to a decrease in skeletal muscle mass, with or without a reduction in adipose tissue. The breakdown of muscle tissue is known as sarcopenia. This is clinically defined as loss of muscle mass and/or muscle strength, with loss of muscle strength being more important than muscle mass. Cachexia is responsible for the death of at least 20% of all cancer patients. The incidence in these patients varies, depending on the type of disease, between 80% for patients with gastric and pancreatic cancer, 50% for patients with lung, colon and prostate cancer, and about 40% for patients with breast cancer or leukemia. It is often difficult to distinguish between tumour-associated cachexia and cachexia caused by side effects and complications of oncological therapy. The main clinical feature of cachexia is involuntary weight loss, but this does not always manifest itself clinically, making it much more difficult to identify patients at risk. Not only the long-term outcome of the patient is influenced by cachexia and sarcopenia. Immediate postoperative complication rates (morbidity) are also increased and have profound effects on the burden of disease and the suffering of patients after surgical treatment. Cachexia, sarcopenia and myosteatosis are therefore highly relevant parameters for everyday clinical practice, which have a significant influence on the postoperative outcome of the patient. Several tools have been developed to aid the identification of patients with nutritional risk, i.e. involuntary weight loss, reduced muscle strength and physical condition. Such measures should be a part of our daily clinical routine to ensure the identification of patients with the highest postoperative risk. Novel preconditioning treatment may be beneficial to certain patient groups to reduce postoperative morbidity.



Publication History

Article published online:
21 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 2013; 10: 90-99
  • 2 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 601
  • 3 Muscaritoli M, Anker SD, Argiles J. et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010; 29: 154-159
  • 4 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423
  • 5 Cederholm T, Jensen GL, Correia M. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. Clin Nutr 2019; 38: 1-9
  • 6 Kondrup J, Allison SP, Elia M. et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr 2003; 22: 415-421
  • 7 van der Kroft G, Janssen-Heijnen MLG, van Berlo CLH. et al. Evaluation of nutritional status as an independent predictor of post-operative complications and morbidity after gastro-intestinal surgery. Clin Nutr ESPEN 2015; 10: e129-e133
  • 8 Lauretani F, Russo CR, Bandinelli S. et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985) 2003; 95: 1851-1860
  • 9 Prado CM, Birdsell LA, Baracos VE. The emerging role of computerized tomography in assessing cancer cachexia. Curr Opin Support Palliat Care 2009; 3: 269-275
  • 10 Mourtzakis M, Prado CM, Lieffers JR. et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997-1006
  • 11 Aubrey J, Esfandiari N, Baracos VE. et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol (Oxf) 2014; 210: 489-497
  • 12 Miljkovic I, Cauley JA, Wang PY. et al. Abdominal myosteatosis is independently associated with hyperinsulinemia and insulin resistance among older men without diabetes. Obesity (Silver Spring) 2013; 21: 2118-2125
  • 13 Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care 2010; 13: 260-264
  • 14 Stretch C, Aubin JM, Mickiewicz B. et al. Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periampullary adenocarcinomas. PLoS One 2018; 13: e0196235
  • 15 Goodpaster BH, Kelley DE, Thaete FL. et al. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985) 2000; 89: 104-110
  • 16 van Dijk DP, Bakens MJ, Coolsen MM. et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle 2017; 8: 317-326
  • 17 van Dijk DPJ, Bakers FCH, Sanduleanu S. et al. Myosteatosis predicts survival after surgery for periampullary cancer: a novel method using MRI. HPB (Oxford) 2018; 20: 715-720
  • 18 West MA, van Dijk DPJ, Gleadowe F. et al. Myosteatosis is associated with poor physical fitness in patients undergoing hepatopancreatobiliary surgery. J Cachexia Sarcopenia Muscle 2019; 10: 860-871
  • 19 Zoico E, Corzato F, Bambace C. et al. Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriatr 2013; 57: 411-416
  • 20 Fearon K, Strasser F, Anker SD. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489-495
  • 21 Kubrak C, Olson K, Jha N. et al. Nutrition impact symptoms: key determinants of reduced dietary intake, weight loss, and reduced functional capacity of patients with head and neck cancer before treatment. Head Neck 2010; 32: 290-300
  • 22 Simons JP, Schols AM, Hoefnagels JM. et al. Effects of medroxyprogesterone acetate on food intake, body composition, and resting energy expenditure in patients with advanced, nonhormone-sensitive cancer: a randomized, placebo-controlled trial. Cancer 1998; 82: 553-560
  • 23 Nixon DW, Lawson DH, Kutner M. et al. Hyperalimentation of the cancer patient with protein-calorie undernutrition. Cancer Res 1981; 41: 2038-2045
  • 24 Dewys WD, Begg C, Lavin PT. et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 1980; 69: 491-497
  • 25 Teunissen SC, Wesker W, Kruitwagen C. et al. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage 2007; 34: 94-104
  • 26 Barratt SM, Smith RC, Kee AJ. et al. Multimodal analgesia and intravenous nutrition preserves total body protein following major upper gastrointestinal surgery. Reg Anesth Pain Med 2002; 27: 15-22
  • 27 Awad S, Tan BH, Cui H. et al. Marked changes in body composition following neoadjuvant chemotherapy for oesophagogastric cancer. Clin Nutr 2012; 31: 74-77
  • 28 Smith MR, Finkelstein JS, McGovern FJ. et al. Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab 2002; 87: 599-603
  • 29 Antoun S, Birdsell L, Sawyer MB. et al. Association of skeletal muscle wasting with treatment with sorafenib in patients with advanced renal cell carcinoma: results from a placebo-controlled study. J Clin Oncol 2010; 28: 1054-1060
  • 30 Bachmann J, Heiligensetzer M, Krakowski-Roosen H. et al. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg 2008; 12: 1193-1201
  • 31 Joglekar S, Asghar A, Mott SL. et al. Sarcopenia is an independent predictor of complications following pancreatectomy for adenocarcinoma. J Surg Oncol 2015; 111: 771-775
  • 32 Lieffers JR, Bathe OF, Fassbender K. et al. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer 2012; 107: 931-936
  • 33 Martin L, Birdsell L, Macdonald N. et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 2013; 31: 1539-1547
  • 34 Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009; 89: 381-410
  • 35 Uomo G, Gallucci F, Rabitti PG. Anorexia-cachexia syndrome in pancreatic cancer: recent development in research and management. JOP 2006; 7: 157-162
  • 36 van Vledder MG, Levolger S, Ayez N. et al. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg 2012; 99: 550-557
  • 37 Simonsen C, de Heer P, Bjerre ED. et al. Sarcopenia and Postoperative Complication Risk in Gastrointestinal Surgical Oncology: A Meta-analysis. Ann Surg 2018; 268: 58-69
  • 38 Kuritzkes BA, Pappou EP, Kiran RP. et al. Visceral fat area, not body mass index, predicts postoperative 30-day morbidity in patients undergoing colon resection for cancer. Int J Colorectal Dis 2018; 33: 1019-1028
  • 39 Takagi K, Yoshida R, Yagi T. et al. Radiographic sarcopenia predicts postoperative infectious complications in patients undergoing pancreaticoduodenectomy. BMC Surg 2017; 17: 64
  • 40 van der Kroft G, Bours D, Janssen-Heijnen DM. et al. Value of sarcopenia assessed by computed tomography for the prediction of postoperative morbidity following oncological colorectal resection: A comparison with the malnutrition screening tool. Clin Nutr ESPEN 2018; 24: 114-119
  • 41 Canet J, Gallart L, Gomar C. et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010; 113: 1338-1350
  • 42 Fernandez-Bustamante A, Frendl G, Sprung J. et al. Postoperative Pulmonary Complications, Early Mortality, and Hospital Stay Following Noncardiothoracic Surgery: A Multicenter Study by the Perioperative Research Network Investigators. JAMA Surg 2017; 152: 157-166
  • 43 Fleisher LA, Linde-Zwirble WT. Incidence, outcome, and attributable resource use associated with pulmonary and cardiac complications after major small and large bowel procedures. Perioper Med (Lond) 2014; 3: 7 eCollection2014
  • 44 Haines KJ, Skinner EH, Berney S. et al. Association of postoperative pulmonary complications with delayed mobilisation following major abdominal surgery: an observational cohort study. Physiotherapy 2013; 99: 119-125
  • 45 Serpa Neto A, Hemmes SN, Barbas CS. et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med 2014; 2: 1007-1015
  • 46 van der Kroft G, van Dijk DPJ, Rensen SS. et al. Low thoracic muscle radiation attenuation is associated with postoperative pneumonia following partial hepatectomy for colorectal metastasis. HPB (Oxford) 2020; 22: 1011-1019
  • 47 Czigany Z, Kramp W, Bednarsch J. et al. Myosteatosis to predict inferior perioperative outcome in patients undergoing orthotopic liver transplantation. Am J Transplant 2020; 20: 493-503
  • 48 Schlegel A, Linecker M, Kron P. et al. Risk Assessment in High- and Low-MELD Liver Transplantation. Am J Transplant 2017; 17: 1050-1063
  • 49 Dutkowski P, Oberkofler CE, Slankamenac K. et al. Are there better guidelines for allocation in liver transplantation? A novel score targeting justice and utility in the model for end-stage liver disease era. Ann Surg 2011; 254: 745-753 discussion 753
  • 50 Boecker J, Czigany Z, Bednarsch J. et al. Potential value and limitations of different clinical scoring systems in the assessment of short- and long-term outcome following orthotopic liver transplantation. PLoS One 2019; 14: e0214221
  • 51 van Moll CC, Schep G, Vreugdenhil A. et al. The effect of training during treatment with chemotherapy on muscle strength and endurance capacity: A systematic review. Acta Oncol 2016; 55: 539-546
  • 52 van Rooijen SJ, Huisman D, Stuijvenberg M. et al. Intraoperative modifiable risk factors of colorectal anastomotic leakage: Why surgeons and anesthesiologists should act together. Int J Surg 2016; 36: 183-200
  • 53 Guttridge DC, Mayo MW, Madrid LV. et al. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 2000; 289: 2363-2366
  • 54 Boden I, Skinner EH, Browning L. et al. Preoperative physiotherapy for the prevention of respiratory complications after upper abdominal surgery: pragmatic, double blinded, multicentre randomised controlled trial. BMJ 2018; 360: j5916
  • 55 Dunne DF, Jack S, Jones RP. et al. Randomized clinical trial of prehabilitation before planned liver resection. Br J Surg 2016; 103: 504-512
  • 56 West MA, Loughney L, Lythgoe D. et al. Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth 2015; 114: 244-251
  • 57 Berkel AEM, Bongers BC, Kotte H. et al. Effects of Community-based Exercise Prehabilitation for Patients Scheduled for Colorectal Surgery With High Risk for Postoperative Complications: Results of a Randomized Clinical Trial. Ann Surg 2021;
  • 58 Adamsen L, Quist M, Andersen C. et al. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial. BMJ 2009; 339: b3410
  • 59 Kaido T, Ogawa K, Fujimoto Y. et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant 2013; 13: 1549-1556
  • 60 Krell RW, Kaul DR, Martin AR. et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl 2013; 19: 1396-2402
  • 61 Englesbe MJ, Patel SP, He K. et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg 2010; 211: 271-278