Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(16): 2809-2818
DOI: 10.1055/a-1463-4219
DOI: 10.1055/a-1463-4219
feature
Photoredox-Mediated Asymmetric Cross-Dehydrogenative Coupling of Enones and Tertiary Amines by Chiral Primary Amine Catalysis
We thank the Natural Science Foundation of China (21672217, 21861132003, and 22031006) and Tsinghua University Initiative Scientific Research Program for financial support. S.L. is supported by the National Program of Top-notch Young Professionals.

Abstract
A catalytic asymmetric dehydrogenative cross-coupling reaction between enones and tertiary amines enabled by synergistic photoredox and chiral primary amine catalysis is reported. The reaction was proposed to proceed via the interception of iminium ion intermediate, in situ generated from photoredox oxidation, by dienamine at α-position, followed by isomerization, leading to aza-Morita–Baylis–Hillman-type products with good diastereo- and enantioselectivity.
Key words
cross dehydrogenative coupling - photoredox oxidation - primary amine catalysis - dienamine - enoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1463-4219.
- Supporting Information
Publication History
Received: 21 February 2021
Accepted after revision: 24 March 2021
Accepted Manuscript online:
24 March 2021
Article published online:
19 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Parvatkar PT, Manetsch R, Banik BK. Chem. Asian J. 2019; 14: 6
- 1b Chen B, Wu L.-Z, Tung C.-H. Acc. Chem. Res. 2018; 51: 2512
- 1c Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 1d Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 1e Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 1f Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 1g Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 2a Rej S, Ano Y, Naoto C. Chem. Rev. 2020; 120: 1788
- 2b Hu Y, Wang C. ChemCatChem 2019; 11: 1167
- 2c Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 2d Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
- 2e Manikandan R, Jeganmohan M. Chem. Commun. 2017; 53: 8931
- 3a Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 3b Zhang G, Ma Y, Wang S, Zhang Y, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
- 3c Ma Y, Zhang G, Zhang J, Yang D, Wang R. Org. Lett. 2014; 16: 5358
- 3d Feng Z.-J, Xuan J, Xia X.-D, Ding W, Guo W, Chen J.-R, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Org. Biomol. Chem. 2014; 12: 2037
- 3e Wei G, Zhang C, Bureš F, Ye X, Tan C.-H, Jiang Z. ACS Catal. 2016; 6: 3708
- 4a Curti C, Battistini L, Sartori A, Zanardi F. Chem. Rev. 2020; 120: 2448
- 4b Marcos V, Alemán J. Chem. Soc. Rev. 2016; 45: 6812
- 4c Jurberg ID, Chatterjee I, Tannert R, Melchiorre P. Chem. Commun. 2013; 49: 4869
- 5 For CDC reactions of carbonyl compounds with tertiary amines, see: Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Adv. Synth. Catal. 2021; 363: 602
- 6a Zhou Z, Wang Z.-X, Zhou Y.-C, Xiao W, Ouyang Q, Du W, Chen Y.-C. Nat. Chem. 2017; 9: 590
- 6b Mose R, Preegel G, Larsen J, Jakobsen S, Iversen EH, Jørgensen KA. Nat. Chem. 2017; 9: 487
- 6c Zou C, Zeng C, Liu Z, Lu M, Sun X, Ye J. Angew. Chem. Int. Ed. 2016; 55: 14257
- 6d Mose R, Jensen ME, Preegel G, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13630
- 6e Yin X, Zheng Y, Feng X, Jiang K, Wei X.-Z, Gao N, Chen Y.-C. Angew. Chem. Int. Ed. 2014; 53: 6245
- 6f Han B, He Z.-Q, Li J.-L, Li R, Jiang K, Liu T.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5474
- 6g Li M.-M, Xiong Q, Qu B.-L, Xiao Y.-Q, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2020; 59: 17429
- 7a Sofiadis M, Kalaitzakis D, Sarris J, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2019; 58: 6742
- 7b Huang Y.-S, Song S.-G, Ren L, Li Y.-G, Wu X. Eur. J. Org. Chem. 2019; 6838
- 7c Iorio ND, Righi P, Mazzanti A, Mancinelli M, Ciogli A, Bencivenni G. J. Am. Chem. Soc. 2014; 136: 10250
- 7d Zhan G, He Q, Yuan X, Chen Y.-C. Org. Lett. 2014; 16: 6000
- 7e Bastida D, Liu Y, Tian X, Escudero-Adán E, Melchiorre P. Org. Lett. 2013; 15: 220
- 7f Bencivenni G, Galzerano P, Mazzanti A, Bartoli G, Melchiorre P. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20642
- 8a Kutwal MS, Padmaja VM. D, Appayee C. Eur. J. Org. Chem. 2020; 2720
- 8b Maity S, Sar S, Ghorai P. Org. Lett. 2018; 20: 1707
- 8c Arimitsu S, Yonamine T, Higashi M. ACS Catal. 2017; 7: 4736
- 8d Stiller J, Marqués-López E, Herrera RP, Fröhlich R, Strohmann C, Christmann M. Org. Lett. 2011; 13: 70
- 8e Číhalová S, Dziedzic P, Córdova A, Veselý J. Adv. Synth. Catal. 2011; 353: 1096
- 8f Han B, Xiao Y.-C, He Z.-Q, Chen Y.-C. Org. Lett. 2009; 11: 4660
- 8g Marqués-López E, Herrera RP, Marks T, Jacobs WC, Könning D, Figueiredo RM, Christmann M. Org. Lett. 2009; 11: 4116
- 8h Vesely J, Dziedzic P, Córdova A. Tetrahedron Lett. 2007; 48: 6900
- 8i Utsumi N, Zhang H, Tanaka F, Barbas CF. Angew. Chem. Int. Ed. 2007; 46: 1878
- 9a Jia Z, Yang Q, Zhang L, Luo S. ACS Catal. 2019; 9: 3589
- 9b Zhu L, Wang D, Jia Z, Lin Q, Huang M, Luo S. ACS Catal. 2018; 8: 5466
- 9c Zhang W, Zhu Y, Zhang L, Luo S. Chin. J. Chem. 2018; 36: 716
- 9d Yang Q, Jia Z, Li L, Zhang L, Luo S. Org. Chem. Front. 2018; 5: 237
- 9e Yang Q, Zhang L, Ye C, Luo S, Wu L.-Z, Tung C.-H. Angew. Chem. Int. Ed. 2017; 56: 3694
- 9f Wang D, Zhang L, Luo S. Org. Lett. 2017; 19: 4924
- 9g Zhang L, Fu N, Luo S. Acc. Chem. Res. 2015; 48: 986
- 9h Zhu Y, Zhang L, Luo S. J. Am. Chem. Soc. 2014; 136: 14642
- 10a Xu G.-Q, Xu J.-T, Feng Z.-T, Liang H, Wang Z.-Y, Qin Y, Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
- 10b Chen H.-W, Lu F.-D, Cheng Y, Jia Y, Lu L.-Q, Xiao W.-J. Chin. J. Chem. 2020; 38: 1671
- 11 Acid additive m-NO2C6H4CO2H as hydrogen acceptor could not be excluded, see Table 1, entry 11 and ref. 9e.
- 12 Wang Y, Zhou H, Yang K, You C, Zhang L, Luo S. Org. Lett. 2019; 21: 407
- 13a Zhang T, Liang W, Huang Y, Li X, Liu Y, Yang B, He C, Zhou X, Zhang J. Chem. Commun. 2017; 53: 12536
- 13b Xia Q, Tian H, Dong J, Qu Y, Li L, Song H, Liu Y, Wang Q. Chem. Eur. J. 2018; 24: 9269
- 13c Barraza SJ, Denmark SE. J. Am. Chem. Soc. 2018; 140: 6668
- 13d Lockhart Z, Knipe PC. Angew. Chem. Int. Ed. 2018; 57: 8478
- 13e Yu F, Hu H, Gu X, Ye J. Org. Lett. 2012; 14: 2038
- 13f Misaki T, Takimoto G, Sugimura T. J. Am. Chem. Soc. 2010; 132: 6286
For selected reviews, see:
For selected reviews on C–H olefinations, see:
For reviews about dienamine catalysis, see:
For selected cycloaddition reactions of cyclic 2-enones in recent years, see:
For α-additions of dienamine, see: