RSS-Feed abonnieren
DOI: 10.1055/a-1464-2524
Cobalt-Catalyzed Isomerization of Alkenes
National Science Foundation Division of Chemistry (CHE-1554906).

In memory of Professor Alan H. Cowley (1934–2020).
Abstract
Catalytic isomerization of alkenes is a highly atom-economical approach to upgrade from lower- to higher-value alkenes. Consequently, tremendous attention has been devoted to the development of this transformation, approaches which exploit cobalt catalysis are particularly attractive. This short review focuses on the cobalt-catalyzed alkene isomerization, including positional isomerization, geometric isomerization, and cycloisomerization. Three main types of reaction mechanism have been discussed to help the reader to better understand and make meaningful comparison between the different transformations.
1 Introduction
2 Positional Isomerization
3 Geometric Isomerization
4 Cycloisomerization
5 Conclusion and Outlook
Key words
cobalt catalysis - alkene isomerization - cycloisomerization - reaction mechanism - stereoselective alkene isomerization - positional isomerizationPublikationsverlauf
Eingereicht: 07. Februar 2021
Angenommen nach Revision: 25. März 2021
Accepted Manuscript online:
25. März 2021
Artikel online veröffentlicht:
12. April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1998
- 1b Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 1997
- 1c Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13197
- 1d Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397
- 2a Laronov E, Li H, Mazet C. Chem. Commun. 2014; 50: 9816
- 2b Hilt G. ChemCatChem 2014; 6: 2484
- 2c Molloy JJ, Morack T, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 13654
- 2d Liu X, Li B, Liu Q. Synthesis 2019; 51: 1293
- 2e Ai W, Zhong R, Liu X, Liu Q. Chem. Rev. 2019; 119: 2876
- 3a Grotjahn DB, Larsen CR, Gustafson JL, Nair R, Sharma A. J. Am. Chem. Soc. 2007; 129: 9592
- 3b Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2009; 131: 10354
- 3c Lim HJ, Smith CR, RajanBabu TV. J. Org. Chem. 2009; 74: 4565
- 3d Scarso A, Colladon M, Sgarbossa P, Santo C, Michelin RA, Strukul G. Organometallics 2010; 29: 1487
- 3e Gauthier D, Lindhardt AT, Olsen EP. K, Overgaard J, Skrydstrup T. J. Am. Chem. Soc. 2010; 132: 7998
- 3f Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357
- 3g Clark JR, Griffiths JR, Diver ST. J. Am. Chem. Soc. 2013; 135: 3327
- 3h Zhuo L.-G, Yao Z.-K, Yu Z.-X. Org. Lett. 2013; 15: 4634
- 3i Larionov E, Lin L, Guénée L, Mazet C. J. Am. Chem. Soc. 2014; 136: 16882
- 3j Larsen CR, Erdogan G, Grotjahn DB. J. Am. Chem. Soc. 2014; 136: 1226
- 3k Lin L, Romano C, Mazet C. J. Am. Chem. Soc. 2016; 138: 10344
- 3l Wang Y, Qin C, Jia X, Leng X, Huang Z. Angew. Chem. Int. Ed. 2017; 56: 1614
- 3m Huang R.-Z, Lau K.-K, Li Z.-F, Liu T.-L, Zhao Y. J. Am. Chem. Soc. 2018; 140: 14647
- 4a Vasseur A, Bruffaerts J, Marek I. Nat. Chem. 2016; 8: 209
- 4b Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
- 4c Fiorito D, Scaringi S, Mazet C. Chem. Soc. Rev. 2021; 50: 1391
- 5a Metternich JB, Gilmour R. J. Am. Chem. Soc. 2015; 137: 11254
- 5b Cai W, Fan H, Ding D, Zhang Y, Wang W. Chem. Commun. 2017; 53: 12918
- 5c Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
- 5d Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
- 5e Xu J, Liu N, Lv H, He C, Liu Z, Shen X, Cheng F, Fan B. Green Chem. 2020; 22: 2739
- 6a Yamamoto Y. Chem. Rev. 2012; 112: 4736
- 6b Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
- 6c Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
- 6d Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268
- 7 Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
- 8 Hendrix WT, von Rosenberg JL. J. Am. Chem. Soc. 1976; 98: 4850
- 9 Satyanarayana N, Periasamy M. J. Organomet. Chem. 1987; 319: 113
- 10 Kobayashi T, Yorimitsu H, Oshima K. Chem. Asian J. 2009; 4: 1078
- 11 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
- 12 Li G, Kuo JL, Han A, Abuyuan JM, Young LC, Norton JR, Palmer JH. J. Am. Chem. Soc. 2016; 138: 7698
- 13 Meng Q.-Y, Schirmer TE, Katou K, König B. Angew. Chem. Int. Ed. 2019; 58: 5723
- 14 Zhang S, Bedi D, Cheng L, Unruh DK, Li G, Findlater M. J. Am. Chem. Soc. 2020; 142: 8910
- 15 Zhao J, Cheng B, Chen C, Lu Z. Org. Lett. 2020; 22: 837
- 16 Liu H, Cai C, Ding Y, Chen J, Liu B, Xia Y. ACS Omega 2020; 5: 11655
- 17 Bergamaschi E, Beltran F, Teskey CJ. Chem. Eur. J. 2020; 26: 5180
- 18 Delgado KR, Youmans DD, Diver ST. Org. Lett. 2020; 22: 750
- 19 Chen C, Dugan TR, Brennessel WW, Weix DJ, Holland PL. J. Am. Chem. Soc. 2014; 136: 945
- 20 Schmidt A, Hilt G. Chem. Asian J. 2014; 9: 2407
- 21 Schmidt A, Nödling AR, Hilt G. Angew. Chem. Int. Ed. 2015; 54: 801
- 22 Liu X, Zhang W, Wang Y, Zhang Z.-X, Jiao L, Liu Q. J. Am. Chem. Soc. 2018; 140: 6873
- 23 Zhang Z.-X, Chen S.-C, Jiao L. Angew. Chem. Int. Ed. 2016; 55: 8090
- 24 Huang G, Ke M, Tao Y, Chen F. J. Org. Chem. 2020; 85: 5321
- 25a Terry EM, Eichelberger L. J. Am. Chem. Soc. 1925; 47: 1402
- 25b Dickinson RG, Lotzkar H. J. Am. Chem. Soc. 1937; 59: 472
- 25c Fitzpatrick JD, Orchin M. J. Org. Chem. 1957; 22: 1177
- 26 Liu H, Xu M, Cai C, Chen J, Gu Y, Xia Y. Org. Lett. 2020; 22: 1193
- 27a Dolaine R, Gleason JL. Org. Lett. 2000; 2: 1753
- 27b Ajamian A, Gleason JL. Org. Lett. 2001; 3: 4161
- 27c Ajamian A, Gleason JL. Org. Lett. 2003; 5: 2409
- 28 Matos JL. M, Green SA, Chun Y, Dang VQ, Dushin RG, Richardson P, Chen JS, Piotrowski DW, Paegel BM, Shenvi RA. Angew. Chem. Int. Ed. 2020; 59: 12998
- 29 Shi S, Kuo JL, Chen T, Norton JR. Org. Lett. 2020; 22: 6171
- 30 Liu J, Yang Z, Zheng M, Wu H, Chen N, Xu J. Synthesis 2019; 51: 3320
For review of green chemistry, see:
For review of alkene isomerization, see:
For selected examples of noble metal-catalyzed alkene isomerization:
For reviews of remote functionalization, see:
For selected examples of photocatalyzed geometric isomerization of alkenes, see:
For reviews of cycloisomerization of dienes, see: