Subscribe to RSS
DOI: 10.1055/a-1480-8884
Rh(II)-Catalysed Condensations of N-Sulfonyl-1,2,3-triazoles with Aminals
Abstract
#
N-Sulfonyl-1,2,3-triazoles 1, readily accessible through Cu(I)-catalysed azide alkyne cycloadditions (CuAACs),[1] are key building blocks in synthetic, biological and medicinal chemistry.[2] In the presence of dirhodium complexes, behaving as decomposition catalysts, they generate α-imino carbenes 2 (Table [1], A).[3] These electrophilic unsaturated intermediates afford synthetically useful and original conversions, from migrations to ylide-forming reactions and subsequent transformations.[4] [5] Recently, studies were reported on their reactivity with cyclic diaryl aminals that generate, after ylide formation (3) and subsequent ring opening, iminium intermediates of type 4 (Scheme [1]). Several synthetic applications have been published using these electrophilic moieties 4 over recent years, in particular a series of cascade reactions (Table [1]).[6] These will be the focus of this Spotlight.
The first report of this type of reactivity was described using Tröger bases 5 as substrates. Compounds 5 were shown to react with triazoles 1 under Rh2(Piv)4 catalysis (2 mol%) to yield polycyclic indoline-benzodiazepines 6 (Table [1], B). After a [1,2]-Stevens-like rearrangement occurring via the corresponding ring-opened iminium intermediate 4 (Scheme [1]), a cascade of Friedel–Crafts, Grob, and aminal formation reactions follows to generate the polycyclic derivatives (Table [1], C, steps i–v).[7] Products 6 are formed as single isomers (d.r. > 49:1, with four stereocenters including two bridgehead N-atoms). Key mechanistic insights were obtained during the study pointing toward the occurrence of metal-bound ylides to explain the regioselectivity of certain reactions. In fact, if a choice is provided on the aminal bridge between an electron-rich and an electron-poor nitrogen atom, then the formation of the ylide proceeds on the formally less reactive N-atom, the electron-deficient one! This counterintuitive observation of a preferred attack by the less-nucleophilic N-atom of the electrophilic carbene is the consequence of a Curtin–Hammett-type situation that is detailed in the original article.[7a] In another study, further mechanistic insights were gained to explain the racemization that happens when starting with enantiopure Tröger bases as substrates due to a reversibility of the initial aza-Mannich reaction (Table [1], C, step ii).[7b] Application of this scaffold towards the formation of chiral donor-π-acceptor red-emitting hemicyanine fluorophores 8 was also achieved in a couple of steps that include an original demethylenation protocol (Table [1], D).[8] Finally, products 6 are aminals in their own standing. Further ring expansions by insertion of a second α-imino carbene were possible, resulting in elaborated polycyclic 9-membered-ring triazonanes 9 (Table [1], E).
1,3,5-Triazinanes, compounds 10 possessing a set of three aminal functional groups, were ideal substrates for this type of reactivity and the formation of octahydro-1H-purine derivatives 11 with moderate to good yields was described in 2019 (Table [1], F).[9] Mechanistic studies via DFT calculations suggest that the 1,3,5-triazinanes 10 might undergo a formal [6+3] cycloaddition with the Rh(II)-azavinyl carbene intermediates, which are generated from Rh(II)-catalysed denitrogenation of 1,2,3-triazoles. Afterwards, ring closure of the formed nine-membered-ring intermediate via intramolecular nucleophilic addition, followed by subsequent rearrangements afforded the final octahydro-1H-purine derivatives.
Finally, very recently, the intermolecular reactivity of N-sulfonyl-1,2,3-triazoles 1 with imidazolidines 12 has also been reported.[10] Under dirhodium catalysis (3 mol%), polycyclic products 13 are obtained in good yields (up to 90%; d.r. up to 6.8:1). The process is general and affords systematically the pyrazino-indolines 13 (Table [1], G). However, and importantly, with unsymmetrically substituted imidazolidine 14, a regiodivergent pathway is obtained favoring the selective formation of 8-membered-ring hexahydro-1,3,6-triazocines 15 (Table [1], H). Based on first principles, detailed mechanistic analysis shows that, after regioselective ylide formation and aminal ring opening (Table [1], I, intermediate 4), N-cyclization occurs in this case to form the medium-sized heterocycle 15 (path A, left). Other the other hand, when the aminal is symmetrically substituted with electron-rich substituents on the N-atoms for instance, C-cyclization happens due to a reversibility of the kinetically preferred 8-membered-ring formation (Table [1], I, path B); the irreversible Friedel–Crafts reaction driving the whole process toward more stable adduct 13. For this series, the occurrence of a Curtin–Hammett-type situation is thus again demonstrated (Table [1], I).[11]
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
This chemistry would not have been possible without the contributions and dedication of Alessandro Bosmani, Alejandro Guarnieri-Ibáñez, Dr Adiran de Aguirre, Dr Céline Besnard, Dr Sébastien Goudedranche, and Dr Amalia I. Poblador-Bahamonde.
-
References
- 1a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 1b Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
- 1c Schulze B, Schubert US. Chem. Soc. Rev. 2014; 43: 2522
- 1d Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
- 1e Haugland MM, Borsley S, Cairns-Gibson DF, Elmi A, Cockroft SL. ACS Nano 2019; 13: 4101
- 2a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 2b Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 1053
- 2c Amblard F, Cho JH, Schinazi RF. Chem. Rev. 2009; 109: 4207
- 2d Le Droumaguet C, Wang C, Wang Q. Chem. Soc. Rev. 2010; 39: 1233
- 2e Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
- 3a Harmon RE, Stanley F, Gupta SK, Johnson J. J. Org. Chem. 1970; 35: 3444
- 3b Harmon RE, Earl RA, Gupta SK. J. Chem. Soc. D 1971; 296
- 3c Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
- 4a Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
- 4b Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
- 4c Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
- 4d Anbarasan P, Yadagiri D, Rajasekar S. Synthesis 2014; 46: 3004
- 4e Wang Y, Lei X, Tang Y. Synlett 2015; 26: 2051
- 4f Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
- 5a Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
- 5b Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
- 5c Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352
- 5d Zibinsky M, Fokin VV. Org. Lett. 2011; 13: 4870
- 5e Yadagiri D, Anbarasan P. Chem. Eur. J. 2013; 19: 15115
- 5f Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
- 5g Miura T, Tanaka T, Matsumoto K, Murakami M. Chem. Eur. J. 2014; 20: 16078
- 5h Miura T, Nakamuro T, Liang C.-J, Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
- 5i Yadagiri D, Anbarasan P. Org. Lett. 2014; 16: 2510
- 5j Medina F, Besnard C, Lacour J. Org. Lett. 2014; 16: 3232
- 5k Lindsay VN. G, Viart HM. F, Sarpong R. J. Am. Chem. Soc. 2015; 137: 8368
- 5l Kubiak RW, Mighion JD, Wilkerson-Hill SM, Alford JS, Yoshidomi T, Davies HM. L. Org. Lett. 2016; 18: 3118
- 5m Guarnieri-Ibáñez A, Medina F, Besnard C, Kidd SL, Spring DR, Lacour J. Chem. Sci. 2017; 8: 5713
- 5n Miura T, Zhao Q, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 16645
- 5o Ma X, Xie X, Liu L, Xia R, Li T, Wang H. Chem. Commun. 2018; 54: 1595
- 5p Liu Z, Du Q, Zhai H, Li Y. Org. Lett. 2018; 20: 7514
- 5q Garlets ZJ, Davies HM. L. Org. Lett. 2018; 20: 2168
- 5r Jia R, Meng J, Leng J, Yu X, Deng WP. Chem. Asian J. 2018; 13: 2360
- 5s Yadagiri D, Chaitanya M, Reddy AC. S, Anbarasan P. Org. Lett. 2018; 20: 3762
- 5t Xu Z.-F, Shan L, Zhang W, Cen M, Li C.-Y. Org. Chem. Front. 2019; 6: 1391
- 5u De P B, Atta S, Pradhan S, Banerjee S, Shah TA, Punniyamurthy T. J. Org. Chem. 2020; 85: 4785
- 5v Reddy AC. S, Ramachandran K, Reddy PM, Anbarasan P. Chem. Commun. 2020; 56: 5649
- 5w Dequina HJ, Eshon J, Raskopf WT, Fernández I, Schomaker JM. Org. Lett. 2020; 22: 3637
- 5x Miura T, Nakamuro T, Ishihara Y, Nagata Y, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 20475
- 6a Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
- 6b Jeon HJ, Jung DJ, Kim JH, Kim Y, Bouffard J, Lee S.-g. J. Org. Chem. 2014; 79: 9865
- 6c Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
- 6d Lee DJ, Ko D, Yoo EJ. Angew. Chem. Int. Ed. 2015; 54: 13715
- 6e Lei X, Li L, He Y.-P, Tang Y. Org. Lett. 2015; 17: 5224
- 6f Xu H.-D, Jia Z.-H, Xu K, Zhou H, Shen M.-H. Org. Lett. 2015; 17: 66
- 6g Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376
- 6h Zhao Y.-Z, Yang H.-B, Tang X.-Y, Shi M. Chem. Eur. J. 2015; 21: 3562
- 6i Wang Y, Lei X, Tang Y. Chem. Commun. 2015; 51: 4507
- 6j Rostovskii NV, Ruvinskaya JO, Novikov MS, Khlebnikov AF, Smetanin IA, Agafonova AV. J. Org. Chem. 2017; 82: 256
- 7a Bosmani A, Guarnieri-Ibáñez A, Goudedranche S, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2018; 57: 7151
- 7b Bosmani A, Guarnieri-Ibáñez A, Lacour J. Helv. Chim. Acta 2019; 102: e1900021
- 8 Saleh N, Bosmani A, Besnard C, Bürgi T, Jacquemin D, Lacour J. Org. Lett. 2020; 22: 7599
- 9 Ge J, Wu X, Bao X. Chem. Commun. 2019; 55: 6090
- 10 Guarnieri-Ibáñez A, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Chem. Sci. 2021; 12: 1479
- 11 Haupert LJ, Poutsma JC, Wenthold PG. Acc. Chem. Res. 2009; 42: 1480
Corresponding Author
Publication History
Received: 26 March 2021
Accepted after revision: 12 April 2021
Accepted Manuscript online:
13 April 2021
Article published online:
25 May 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 1b Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
- 1c Schulze B, Schubert US. Chem. Soc. Rev. 2014; 43: 2522
- 1d Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
- 1e Haugland MM, Borsley S, Cairns-Gibson DF, Elmi A, Cockroft SL. ACS Nano 2019; 13: 4101
- 2a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 2b Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 1053
- 2c Amblard F, Cho JH, Schinazi RF. Chem. Rev. 2009; 109: 4207
- 2d Le Droumaguet C, Wang C, Wang Q. Chem. Soc. Rev. 2010; 39: 1233
- 2e Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
- 3a Harmon RE, Stanley F, Gupta SK, Johnson J. J. Org. Chem. 1970; 35: 3444
- 3b Harmon RE, Earl RA, Gupta SK. J. Chem. Soc. D 1971; 296
- 3c Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
- 4a Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
- 4b Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
- 4c Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
- 4d Anbarasan P, Yadagiri D, Rajasekar S. Synthesis 2014; 46: 3004
- 4e Wang Y, Lei X, Tang Y. Synlett 2015; 26: 2051
- 4f Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
- 5a Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
- 5b Chuprakov S, Kwok SW, Zhang L, Lercher L, Fokin VV. J. Am. Chem. Soc. 2009; 131: 18034
- 5c Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352
- 5d Zibinsky M, Fokin VV. Org. Lett. 2011; 13: 4870
- 5e Yadagiri D, Anbarasan P. Chem. Eur. J. 2013; 19: 15115
- 5f Schultz EE, Sarpong R. J. Am. Chem. Soc. 2013; 135: 4696
- 5g Miura T, Tanaka T, Matsumoto K, Murakami M. Chem. Eur. J. 2014; 20: 16078
- 5h Miura T, Nakamuro T, Liang C.-J, Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
- 5i Yadagiri D, Anbarasan P. Org. Lett. 2014; 16: 2510
- 5j Medina F, Besnard C, Lacour J. Org. Lett. 2014; 16: 3232
- 5k Lindsay VN. G, Viart HM. F, Sarpong R. J. Am. Chem. Soc. 2015; 137: 8368
- 5l Kubiak RW, Mighion JD, Wilkerson-Hill SM, Alford JS, Yoshidomi T, Davies HM. L. Org. Lett. 2016; 18: 3118
- 5m Guarnieri-Ibáñez A, Medina F, Besnard C, Kidd SL, Spring DR, Lacour J. Chem. Sci. 2017; 8: 5713
- 5n Miura T, Zhao Q, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 16645
- 5o Ma X, Xie X, Liu L, Xia R, Li T, Wang H. Chem. Commun. 2018; 54: 1595
- 5p Liu Z, Du Q, Zhai H, Li Y. Org. Lett. 2018; 20: 7514
- 5q Garlets ZJ, Davies HM. L. Org. Lett. 2018; 20: 2168
- 5r Jia R, Meng J, Leng J, Yu X, Deng WP. Chem. Asian J. 2018; 13: 2360
- 5s Yadagiri D, Chaitanya M, Reddy AC. S, Anbarasan P. Org. Lett. 2018; 20: 3762
- 5t Xu Z.-F, Shan L, Zhang W, Cen M, Li C.-Y. Org. Chem. Front. 2019; 6: 1391
- 5u De P B, Atta S, Pradhan S, Banerjee S, Shah TA, Punniyamurthy T. J. Org. Chem. 2020; 85: 4785
- 5v Reddy AC. S, Ramachandran K, Reddy PM, Anbarasan P. Chem. Commun. 2020; 56: 5649
- 5w Dequina HJ, Eshon J, Raskopf WT, Fernández I, Schomaker JM. Org. Lett. 2020; 22: 3637
- 5x Miura T, Nakamuro T, Ishihara Y, Nagata Y, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 20475
- 6a Chuprakov S, Kwok SW, Fokin VV. J. Am. Chem. Soc. 2013; 135: 4652
- 6b Jeon HJ, Jung DJ, Kim JH, Kim Y, Bouffard J, Lee S.-g. J. Org. Chem. 2014; 79: 9865
- 6c Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
- 6d Lee DJ, Ko D, Yoo EJ. Angew. Chem. Int. Ed. 2015; 54: 13715
- 6e Lei X, Li L, He Y.-P, Tang Y. Org. Lett. 2015; 17: 5224
- 6f Xu H.-D, Jia Z.-H, Xu K, Zhou H, Shen M.-H. Org. Lett. 2015; 17: 66
- 6g Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376
- 6h Zhao Y.-Z, Yang H.-B, Tang X.-Y, Shi M. Chem. Eur. J. 2015; 21: 3562
- 6i Wang Y, Lei X, Tang Y. Chem. Commun. 2015; 51: 4507
- 6j Rostovskii NV, Ruvinskaya JO, Novikov MS, Khlebnikov AF, Smetanin IA, Agafonova AV. J. Org. Chem. 2017; 82: 256
- 7a Bosmani A, Guarnieri-Ibáñez A, Goudedranche S, Besnard C, Lacour J. Angew. Chem. Int. Ed. 2018; 57: 7151
- 7b Bosmani A, Guarnieri-Ibáñez A, Lacour J. Helv. Chim. Acta 2019; 102: e1900021
- 8 Saleh N, Bosmani A, Besnard C, Bürgi T, Jacquemin D, Lacour J. Org. Lett. 2020; 22: 7599
- 9 Ge J, Wu X, Bao X. Chem. Commun. 2019; 55: 6090
- 10 Guarnieri-Ibáñez A, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Chem. Sci. 2021; 12: 1479
- 11 Haupert LJ, Poutsma JC, Wenthold PG. Acc. Chem. Res. 2009; 42: 1480