Synthesis 2021; 53(19): 3555-3563 DOI: 10.1055/a-1485-4956
Tetrahydroxydiboron-Initiated Atom-Transfer Radical Cyclization
Pengfei Wang‡
,
Yuli Li‡
,
The authors are grateful for the financial support from the Major National Science and Technology Projects of water pollution control and treatment (2017ZX07402003). The authors also thank the Natural Science Foundation of Tianjin (19JCYBJC20200) for support of this research.
Abstract
In this work, the first diboron reagent initiated atom-transfer radical cyclization was reported, in which the boryl radicals were generated by the homolytic cleavage of a B–B single bond weakened by the coordination of Lewis base. To clarify the role of carbonate and DMF in the cleavage of B–B bond, we calculated the free energy diagram of two pathways by density functional theory (DFT) investigations. The DFT calculation showed that the presence of carbonate facilitates the B–B bond cleavage to form boron radicals, which can be further stabilized by DMF. Subsequent atom-transfer cyclization initiated by stabilized dihydroxyboron radical is also energetically favored.
Key words
tetrahydroxydiboron -
homolytic cleavage -
atom-transfer radical cyclization -
radical initiator -
density functional theory
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1485-4956.
Supporting Information
Publication History
Received: 01 March 2021
Accepted after revision: 19 April 2021
Accepted Manuscript online: 19 April 2021
Article published online: 26 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Jasperse CP,
Curran DP,
Fevig TL.
Chem. Rev. 1991; 91: 1237
1b
Sibi MP,
Manyem S,
Zimmerman J.
Chem. Rev. 2003; 103: 3263
1c
Rowlands GJ.
Tetrahedron 2009; 65: 8603
1d
Rowlands GJ.
Tetrahedron 2010; 66: 1593
1e
Studer A,
Curran DP.
Angew. Chem. Int. Ed. 2016; 55: 58
1f
Yan M,
Lo JC,
Edwards JT,
Baran PS.
J. Am. Chem. Soc. 2016; 138: 12692
2a
Curran DP.
Synthesis 1988; 417
2b
Curran DP,
Seong CM.
J. Am. Chem. Soc. 1990; 112: 9401
2c
Curran DP,
Tamine J.
J. Org. Chem. 1991; 56: 2746
3a
Gansäuer A,
Bluhm H.
Chem. Rev. 2000; 100: 2771
3b
Crossley SW. M,
Obradors C,
Martinez RM,
Shenvi RA.
Chem. Rev. 2016; 116: 8912
3c
Clark AJ.
Chem. Soc. Rev. 2002; 31: 1
3d
Wang F,
Chen P,
Liu G.
Acc. Chem. Res. 2018; 51: 2036
3e
Snider BB.
Chem. Rev. 1996; 96: 339
3f
Nicolaou KC,
Ellery SP,
Chen JS.
Angew. Chem. Int. Ed. 2009; 48: 7140
3g
Edmonds DJ,
Johnston D,
Procter DJ.
Chem. Rev. 2004; 104: 3371
4a
Ollivier C,
Renaud P.
Chem. Rev. 2001; 101: 3415
4b
Renaud P,
Beauseigneur A,
Brecht-Forster A,
Becattini B,
Darmency V,
Kandhasamy S,
Montermini F,
Ollivier C,
Panchaud P,
Pozzi D,
Scanlan EM,
Schaffner A.-P,
Weber V.
Pure Appl. Chem. 2007; 79: 223
4c
Curran DP,
Solovyev A,
Brahmi MM,
Fensterbank L,
Malacria M,
Lacôte E.
Angew. Chem. Int. Ed. 2011; 50: 10294
4d
Xu A.-Q,
Zhang F.-L,
Ye T,
Yu Z.-X,
Wang Y.-F.
CCS Chem. 2019; 1: 504
4e
Guo A,
Han J.-B,
Tang X.-Y.
Org. Lett. 2018; 20: 2351
5a
Yorimitsu H,
Nakamura T,
Shinokubo H,
Oshima K.
J. Org. Chem. 1998; 63: 8604
5b
Yorimitsu H,
Nakamura T,
Shinokubo H,
Oshima K,
Omoto K,
Fujimoto H.
J. Am. Chem. Soc. 2000; 122: 11041
5c
Yorimitsu H,
Shinokubo H,
Matsubara S,
Oshima K,
Omoto K,
Fujimoto H.
J. Org. Chem. 2001; 66: 7776
6a
Ishiyama T,
Murata M,
Miyaura N.
J. Org. Chem. 1995; 60: 7508
6b
Ishiyama T,
Itoh Y,
Kitano T,
Miyaura N.
Tetrahedron Lett. 1997; 38: 3447
6c
Wang M,
Shi Z.
Chem. Rev. 2020; 120: 7348
6d
Neeve EC,
Geier SJ,
Mkhalid IA. I,
Westcott SA,
Marder TB.
Chem. Rev. 2016; 116: 9091
6e
Kuang Z,
Yang K,
Zhou Y,
Song Q.
Chem. Commun. 2020; 56: 6469
7a
Wang G,
Zhang H,
Zhao J,
Li W,
Cao J,
Zhu C,
Li S.
Angew. Chem. Int. Ed. 2016; 55: 5985
7b
Wang G,
Zhang H,
Zhao J,
Li W,
Cao J,
Zhu C,
Li S.
Angew. Chem. Int. Ed. 2016; 128: 6089
7c
Wang G,
Cao J,
Gao L,
Chen W,
Huang W,
Cheng X,
Li S.
J. Am. Chem. Soc. 2017; 139: 3904
7d
Cao J,
Wang G,
Gao L,
Cheng X,
Li S.
Chem. Sci. 2018; 9: 3664
7e
Gao L,
Wang G,
Cheng X,
Ma J,
Li S.
ACS Catal. 2019; 9: 10142
8a
Fawcett A,
Pradeilles J,
Wang Y,
Mutsuga T,
Myers EL,
Aggarwal VK.
Science 2017; 357: 283
8b
Zhang L,
Jiao L.
J. Am. Chem. Soc. 2017; 139: 607
8c
Zhang L,
Jiao L.
Chem. Sci. 2018; 9: 2711
8d
Zhang L,
Jiao L.
J. Am. Chem. Soc. 2019; 141: 9124
8e
Cheng Y,
Mück-Lichtenfeld C,
Studer A.
Angew. Chem. Int. Ed. 2018; 57: 16832
8f
Cheng Y,
Mück-Lichtenfeld C,
Studer A.
J. Am. Chem. Soc. 2018; 140: 6221
8g
Friese FW,
Studer A.
Angew. Chem. Int. Ed. 2019; 58: 9561
9
Cao J,
Wang G,
Gao L,
Chen H,
Liu X,
Cheng X,
Li S.
Chem. Sci. 2019; 10: 2767
10a
Sebelius S,
Olsson VJ,
Szabó KJ.
J. Am. Chem. Soc. 2005; 127: 10478
10b
Olsson VJ,
Sebelius S,
Selander N,
Szabó KJ.
J. Am. Chem. Soc. 2006; 128: 4588
10c
Molander GA,
Trice SL. J,
Dreher SD.
J. Am. Chem. Soc. 2010; 132: 17701
10d
Zhao C.-J,
Xue D,
Jia Z.-H,
Wang C,
Xiao J.
Synlett 2014; 25: 1577
10e
Erb W,
Hellal A,
Albini M,
Rouden J,
Blanchet J.
Chem. Eur. J. 2014; 20: 6608
10f
Mfuh AM,
Doyle JD,
Chhetri B,
Arman HD,
Larionov OV.
J. Am. Chem. Soc. 2016; 138: 2985
10g
Hu D,
Wang L,
Li P.
Org. Lett. 2017; 19: 2770
10h
Zhang J.-J,
Duan X.-H,
Wu Y,
Yang J.-C,
Guo L.-N.
Chem. Sci. 2019; 10: 161
11a
Londregan AT,
Piotrowski DW,
Xiao J.
Synlett 2013; 24: 2695
11b
Xia Y.-T,
Sun X.-T,
Zhang L,
Luo K,
Wu L.
Chem. Eur. J. 2016; 22: 17151
11c
Cummings SP,
Le T.-N,
Fernandez GE,
Quiambao LG,
Stokes BJ.
J. Am. Chem. Soc. 2016; 138: 6107
11d
Chen D,
Zhou Y,
Zhou H,
Liu S,
Liu Q,
Zhang K,
Uozumi Y.
Synlett 2018; 29: 1765
12
Baber RA,
Norman NC,
Orpen AG,
Rossi J.
New J. Chem. 2003; 27: 773
13
Sun Z.-Y,
Zhou S,
Yang K,
Guo M,
Zhao W,
Tang X,
Wang G.
Org. Lett. 2020; 22: 6214
14 For the slow hydrolysis of B2 cat2 to B2 (OH)4 , see:
Li J,
Wang H,
Qiu Z,
Huang C.-Y,
Li C.-J.
J. Am. Chem. Soc. 2020; 142: 13011
15
Ikeda M,
Teranishi H,
Nozaki K,
Ishibashi H.
J. Chem. Soc., Perkin Trans. 1 1998; 10: 1691
16
Zhao Y,
Truhlar DG.
Theor. Chem. Acc. 2008; 120: 215
17
Weigend F,
Ahlrichs R.
Phys. Chem. Chem. Phys. 2005; 7: 3297
18
Zheng J,
Xu X,
Truhlar DG.
Theor. Chem. Acc. 2010; 128: 295
19
Marenich AV,
Cramer CJ,
Truhlar DG.
J. Phys. Chem. B 2009; 113: 6378
20
Frisch MJ,
Trucks GW,
Schlegel HB,
Scuseria GE,
Robb MA,
Cheeseman JR,
Scalmani G,
Barone V,
Mennucci B,
Petersson GA,
Nakatsuji H,
Caricato M,
Li X,
Hratchian HP,
Izmaylov AF,
Bloino J,
Zheng G,
Sonnenberg JL,
Hada M,
Ehara M,
Toyota K,
Fukuda R,
Hasegawa J,
Ishida M,
Nakajima T,
Honda Y,
Kitao O,
Nakai H,
Vreven T,
Montgomery JA. Jr,
Peralta JE,
Ogliaro F,
Bearpark M,
Heyd JJ,
Brothers E,
Kudin KN,
Staroverov VN,
Kobayashi R,
Normand J,
Raghavachari K,
Rendell A,
Burant JC,
Iyengar SS,
Tomasi J,
Cossi M,
Rega N,
Millam NJ,
Klene M,
Knox JE,
Cross JB,
Bakken V,
Adamo C,
Jaramillo J,
Gomperts R,
Stratmann RE,
Yazyev O,
Austin AJ,
Cammi R,
Pomelli C,
Ochterski JW,
Martin RL,
Morokuma K,
Zakrzewski VG,
Voth GA,
Salvador P,
Dannenberg JJ,
Dapprich S,
Daniels AD,
Farkas O,
Foresman JB,
Ortiz JV,
Cioslowski J,
Fox DJ.
Gaussian 09. Gaussian Inc; Wallingford CT: 2009
21
Cao L,
Li C.
Tetrahedron Lett. 2008; 49: 7380
22
Liu Q,
Chen C,
Tong X.
Tetrahedron Lett. 2015; 56: 4483
23
Wang K.-B,
Ran R.-Q,
Xiu S.-D,
Li C.-Y.
Org. Lett. 2013; 15: 2374