Subscribe to RSS
DOI: 10.1055/a-1528-0625
Scalable Synthesis of l-allo-Enduracididine: The Unusual Amino Acid Present in Teixobactin
Abstract
A scalable synthesis of l-allo-enduracididine is achieved from commercially available (S)-glycidol in ten linear steps involving well-established synthetic transformations. The synthetic route is flexible and can be used to synthesize all four diastereomers by changing the stereochemistry of glycidol and Sharpless asymmetric dihydroxylation reagent.
#
Key words
antibiotics - teixobactin - depsipeptide - unusual amino acid - l-allo-enduracididine - Staudinger reaction - Sharpless asymmetric dihydroxylationAccording to WHO, ESKAPE pathogens appear as a major public health concern in hospital acquired infections in critically ill or immunocompromised patients.[1] In early 2015, a novel cyclic depsipeptide teixobactin (1) was isolated from screening of an unculturable β-proteobacteria (Eleftheria terrae) by iChip technique.[2] Teixobactin exhibits excellent activities against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA, MIC 0.25 μg/mL), vancomycin-resistant Enterococcus species (VRE, MIC 0.5 μg/mL) and Mycobacterium tuberculosis (Mtb, MIC 0.125 μg/mL).[2] Teixobactin works as a lipase II inhibitor, like vancomycin, by not allowing pentapeptide incorporation into glycopeptidic cell wall of bacteria, thus rendering it susceptible to rupture.[3] In addition, 1 is also found to inhibit lipase III, another important component of bacterial cell-wall synthesis. Teixobactin is an undecapeptide and encompasses an unusual amino acid, l-allo-enduracididine[4] (L-allo-End) and four d-amino acids (Figure 1). The structure of teixobactin contains a depsipeptide macrolide and peptide side chain.
The phenomenal biological activity of 1 prompted research groups to take up the total synthesis[5–9] of teixobactin and analogues[10] to elucidate its pharmacophore[11] towards discovering new antibiotics. So far, five total syntheses of 1 are reported, four solid-phase[5–7],[9] and one solution-phase.[8] The bottleneck in the synthesis of teixobactin is the availability of the unnatural amino acid, l-allo-enduracididine. A careful literature survey revealed easy access to l-allo-enduracididine will help in developing faster and affordable steps in synthesis of 1 and analogues on gram scale. The groups which achieved total[5–9] and partial[12] synthesis have relied on the synthesis of enduracididine either from (2S,3R)-4-hydroxy ornithine (which is obtained from l-aspartic acid)[13] developed by Rudolph et al. and Peoples et al. or from protected trans-hydroxyproline[14] developed by Yuan et al. Recently, Rao and co-workers reported l-allo-End precursor on gram scale via intramolecular guanidinylation followed by alcoholysis.[9]
Our own efforts to complete the total synthesis of teixobactin are hinged on the commercial nonavailability of enduracididine. We have already achieved teixobactin peptide side-chain synthesis in solution phase as well as in solid phase.[15] Thus, we desired to develop an alternate synthesis of l-allo-enduracididine which will be scalable and stereoflexible. Herein, we report the synthesis of this unusual amino acid from (S)-glycidol which is commercially available.
Accordingly, the retrosynthetic analysis envisioned the construction of suitably protected l-allo-enduracididine (Boc-End(Cbz)2-OH, 2) through an intramolecular nucleophilic substitution of guanidine compound 3, which in turn could be achieved from diol 4 through guanidinylation. The diol 4 could be obtained from homoallylic alcohol 5 by Staudinger reaction followed by Sharpless asymmetric dihydroxylation (SAD). The homoallylic alcohol 5 could be synthesized by regioselective ring opening of (S)-glycidol (Scheme 1).
Based on the retrosynthetic analysis, (S)-glycidol was converted into 2 (Scheme 2). The primary hydroxyl group of commercially available (S)-glycidol was protected as tert-butyldiphenylsilyl ether (in 95% yield)[16] and regioselective ring opening of epoxide was carried out using a reported procedure which gave homoallylic alcohol 5 in 100 g scale.[16,17] The regioselective opening of epoxide was achieved with CuI catalyst and vinylmagnesium bromide to get alcohol 5 in 96% yield. Mesylation of alcohol 5 followed by azide displacement using NaN3 gave azido pentenol 6 with inversion of configuration at C-2 and 90% yield over two steps. The azide 6 was reduced under Staudinger reaction conditions using TPP in THF–H2O (3:1) in the presence of (Boc)2O to provide N-Boc-protected amine 7 in 92% yield. The second chirality was introduced via Sharpless asymmetric dihydroxylation[18] using AD mix-β and methanesulfonamide in t-BuOH–H2O (1:1) at 0 °C for 20 h to realize the diol 4 in 92% yield as a separable diastereomeric mixture (by silica gel column chromatography) in 7:3 ratio with the required diastereomer being the major isomer. Our plan was to convert this diol into amino alcohol to couple with N,N′-Di-Cbz-1H-pyrazole-1-carboxamidine to introduce guanidine moiety. Initially, the diol 4 was monotosylated in situ with Ts2O/2,4,6-collidine/pyridine in CH2Cl2 at ≤ –10 °C, treated with ammonium hydroxide in EtOH at 60 °C to give amino alcohol via epoxide[19] which on further treatment with N,N′-di-Cbz-1H-pyrazole-1-carboxamidine[5,12] gave guanidine derivative 3 in 52% overall yield for four sequential transformations without purification of intermediates. To improve the yield of guanidine derivative 3 further, we thought of an alternative synthetic sequence. Selective mesylation of primary alcohol in compound 4 with MsCl/Et3N in CH2Cl2 at ≤ –30 °C, followed by treatment with NaN3 in DMF at 70 °C gave azido alcohol 8 in 87% yield. Then, the azide 8 was reduced under Staudinger reaction conditions (TPP, THF–H2O) to provide amino alcohol which on further treatment with N,N′-di-Cbz-1H-pyrazole-1-carboxamidine[5,12] gave the guanidine derivative 3 in 85% yield (Scheme 2).[20]
The intramolecular cyclization of 3 via triflate[5,12] using triflic anhydride and N,N-diisopropylethylamine at –78 °C allowed us to construct the enduracididine skeleton 9 in 90% yield.[21] This upon deprotection of silyl group with TBAF in THF afforded alcohol 10 in 95% yield. Finally, the oxidation of the obtained primary alcohol 10 using DMP gave aldehyde which upon Pinnick–Lindgren oxidation using a combination of sodium chlorite and NaH2PO4 in t-BuOH–H2O provided the target building block, l-allo-enduracididine (Boc-End(Cbz)2-OH, 2) in 74% yield over two steps, which is being used to complete the total synthesis of teixobactin. A small portion of the carboxylic acid 2 was converted into the corresponding methyl ester 11 using K2CO3/MeI in 76% yield. The present approach allows the synthesis of l-allo-enduracididine in gram scale due to commercial availability of starting material and simple synthetic operations.
In conclusion, a stereoflexible and scalable synthesis of Boc-End(Cbz)2-OH, an unusual amino acid building block of potent depsipeptide antibiotic teixobactin, has been achieved in ten steps with an overall yield of 22.75%. By changing the stereochemistry of starting material, viz., glycidol and dihydroxylating agent, other diastereomers can be synthesized with equal ease.
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
The authors thank the Council of Scientific and Industrial Research (CSIR), Ministry of Science and Technology, Government of India for research facilities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1528-0625.
- Supporting Information
-
References and Notes
- 1a Willyard C. Nature 2017; 543: 7643
- 1b Arias CA, Murray BE. N. Engl. J. Med. 2015; 372: 1168
- 1c Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Antimicrob. Resist. Infect. Control 2019; 8: 137
- 1d Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Front. Microbiol. 2019; 10: 539
- 2 Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaeberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. Nature 2015; 517: 455
- 3 Ng V, Chan WC. Chem. Eur. J. 2016; 22: 12606
- 4 Atkinson DJ, Naysmith BJ, Furkert DP, Brimble MA. Beilstein J. Org. Chem. 2016; 12: 2325
- 5 Giltrap AM, Dowman LJ, Nagalingam G, Ochoa JL, Linington RG, Britton WJ, Payne RJ. Org. Lett. 2016; 18: 2788
- 6 Jin K, Sam LH, Po KH. L, Lin D, Zadeh EH. G, Chen S, Yuan Y, Li X. Nat. Commun. 2016; 7: 12394
- 7 Liu L, Wu S, Wang Q, Zhang M, Wang B, He G, Chen G. Org. Chem. Front. 2018; 5: 1431
- 8 Gao B, Chen S, Hou YN, Zhao YJ, Ye T, Xu Z. Org. Biomol. Chem. 2019; 17: 1141
- 9 Zong Y, Fang F, Meyer KJ, Wang L, Ni Z, Gao H, Lewis K, Zhang J, Rao Y. Nat. Commun. 2019; 10: 3268
- 10a Jad YE, Acosta GA, Naicker T, Ramtahal M, El-Faham A, Govender T, De la Torre BG, Albericio F. Org. Lett. 2015; 17: 6182
- 10b Parmar A, Iyer A, Vincent CS, Van Lysebetten D, Prior SH, Madder A, Taylor EJ, Singh I. Chem. Commun. 2016; 52: 6060
- 10c Yang H, Chen KH, Nowick JS. ACS Chem. Biol. 2016; 11: 1823
- 10d Monaim SA. H. A, Jad YE, Acosta GA, Naicker T, Ramchuran EJ, El-Faham A, Govender T, Kruger HG, De la Torre BG, Albericio F. RSC Adv. 2016; 6: 73827
- 10e Monaim SA. H. A, Jad YE, Ramchuran EJ, El-Faham A, Govender T, Kruger HG, De la Torre BG, Albericio F. ACS Omega 2016; 1: 1262
- 10f Monaim SA. H. A, Noki S, Ramchuran EJ, El-Faham A, Albericio F, De la Torre BG. Molecules 2017; 22: 1632
- 10g Monaim SA. H. A, Ramchuran EJ, El-Faham A, Albericio F, De la Torre BG. J. Med. Chem. 2017; 60: 7476
- 10h Wu C, Pan Z, Yao G, Wang W, Fang L, Su W. RSC Adv. 2017; 7: 1923
- 10i Jin K, Po KH. L, Wang S, Reuven JA, Wai CN, Lau HT, Chan TH, Chen S, Li X. Bioorg. Med. Chem. 2017; 25: 4990
- 10j Parmar A, Iyer A, Lloyd DG, Vincent CS, Prior SH, Madder A, Taylor EJ, Singh I. Chem. Commun. 2017; 53: 7788
- 10k Parmar A, Iyer A, Prior SH, Lloyd DG, Goh ET. L, Vincent CS, Pallag TP, Bachrati CZ, Breukink E, Madder A, Lakshminarayanan R, Taylor EJ, Singh I. Chem. Sci. 2017; 8: 8183
- 10l Schumacher CE, Harris PW. R, Ding X.-B, Krause B, Wright TH, Cook GM, Furkert DP, Brimble MA. Org. Biomol. Chem. 2017; 15: 8755
- 10m Ng V, Kuehne SA, Chan WC. Chem. Eur. J. 2018; 24: 9136
- 10n Parmar A, Lakshminarayanan R, Iyer A, Mayandi V, Goh ET. L, Lloyd DG, Chalasani ML. S, Verma NK, Prior SH, Beuerman RW, Madder A, Taylor EJ, Singh I. J. Med. Chem. 2018; 61: 2009
- 11a Parmar A, Prior SH, Iyer A, Vincent CS, Van Lysebetten D, Breukink E, Madder A, Taylor EJ, Singh I. Chem. Commun. 2017; 53: 2016
- 11b Yang H, Du Bois DR, Ziller JW, Nowick JS. Chem. Commun. 2017; 53: 2772
- 11c Chen KH, Le SP, Han X, Frias JM, Nowick JS. Chem. Commun. 2017; 53: 11357
- 11d Yang H, Wierzbicki M, Du Bois DR, Nowick JS. J. Am. Chem. Soc. 2018; 140: 14028
- 11e Monaim SA. H. A, Jad YE, El-Faham A, De la Torre BG, Albericio F. Bioorg. Med. Chem. 2018; 26: 2788
- 11f Yang H, Pishenko AV, Li X, Nowick JS. J. Org. Chem. 2020; 85: 1331
- 11g Gunjal VB, Thakare R, Chopra S, Reddy DS. J. Med. Chem. 2020; 63: 12171
- 12 Dhara S, Gunjal VB, Handore KL, Reddy DS. Eur. J. Org. Chem. 2016; 4289
- 13a Rudolph J, Hannig F, Theis H, Wischnat R. Org. Lett. 2001; 3: 3153
- 13b Peoples AJ, Hughes D, Ling LL, Millett W, Nitti A, Spoering A, Steadman VA, Chiva JY. C, Lazarides L, Jones MK, Poullence KG, Lewis K. WO2014089053 2014
- 13c Peoples, A. J.; Hughes, D.; Ling, L. L.; Millett, W.; Nitti, A.; Spoering, A.; Steadman, V. A.; Chiva, J. Y. C.; Lazarides, L.; Jones, M. K.; Poullence, K. G.; Lewis, K. US20140194345, 2014.
- 14 Craig W, Chen J, Richardson D, Thorpe R, Yuan Y. Org. Lett. 2015; 17: 4620
- 15a Sangeetha D, Nayani K, Mainkar PS, Chandrasekhar S. Synlett 2019; 30: 2268
- 15b Bukya H, Nayani K, Gangireddy P, Mainkar PS. Eur. J. Org. Chem. 2020; 5358
- 16 Carneiro VM. T, Avila CM, Balunas MJ, Gerwick WH, Pilli RA. J. Org. Chem. 2014; 79: 630
- 17 Bonini C, Chiummiento L, Lopardo MT, Pullez M, Colobert F, Solladie G. Tetrahedron Lett. 2003; 44: 2695
- 18a Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong KS, Kwong HL, Morikawa K, Wang ZM, Xu D, Zhang X.-L. J. Org. Chem. 1992; 57: 2768
- 18b Kolb HC, Sharpless KB. Chem Rev. 1994; 94: 2483
- 19a Austad BA, Calkins TL, Fang FG, Horstmann TE, Hu Y, Lewis BM, Niu X, Noland TA, Orr JD, Schnaderbeck MJ, Zhang H, Asakawa N, Asai N, Chiba H, Hasebe T, Hoshino Y, Ishizuka H, Kajima T, Kayano A, Komatsu Y, Kubota M, Kuroda H, Miyazawa M, Tagami K, Watanabe T. Synlett 2013; 24: 333
- 19b Sun D.-Y, Han G.-Y, Gong J.-X, Nay B, Li X.-W, Guo Y.-W. Org. Lett. 2017; 19: 714
- 20 Synthetic Procedure for Guanidine Derivative 3 Triphenylphosphine (2.0 g, 7.2 mmol) was added to a stirred solution of azide 8 (1.27 g, 2.5 mmol) in THF–H2O (15 mL, 3:1) at 0 °C. Then the reaction was allowed to warm to room temperature and stirred for 12 h. After this period, to the reaction Goodman’s reagent (N,N'-di-Cbz-1H-pyrazole-1-carboxamidine, 968 mg, 2.5 mmol) was added, and the mixture was stirred for another 6 h. The reaction was extracted with EtOAc (2 × 100 mL), the organic layer was washed with brine (75 mL), dried over anhydrous Na2SO4, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using 85:15 hexanes–EtOAc (v/v) as eluent to give 3 (1.7 g, 85%) as a white solid. TLC: Rf = 0.5 (hexanes–EtOAc, 7:3); mp 92 °C; [α]D 20 +6.2 (c 1.1, CHCl3). IR (neat): νmax = 3370, 3334, 2946, 1640, 1057 cm–1. 1H NMR (400 MHz, CDCl3): δ = 11.65 (s, 1 H), 8.71–8.68 (br s, 1 H), 7.57–7.50 (m, 4 H), 7.40–7.16 (m, 16 H), 5.10 (s, 2 H), 5.04 (s, 2 H), 4.82 (d, J = 8.8 Hz, 1 H), 4.55 (s, 1 H), 3.86–3.75 (m, 1 H), 3.75–3.59 (m, 3 H), 3.51 (dd, J = 10.3, 3.7 Hz, 1 H), 3.23–3.08 (m, 1 H), 1.65–1.53 (m, 1 H), 1.37 (s, 9 H), 1.35–1.25 (m, 1 H), 0.98 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 163.6, 157.3, 156.1, 153.5, 136.7, 135.6, 135.5, 134.6, 132.9, 132.7, 129.9, 129.8, 128.6, 128.5, 128.4, 128.3, 128.1, 127.8, 127.8, 80.1, 68.0, 67.0, 66.3, 48.6, 46.3, 38.1, 28.3, 26.8, 19.2. HRMS (ESI): m/z calcd for [M + H]+: C43H55N4O8Si: 783.3779; found: 783.3783.
- 21 Synthetic Procedure for Intramolecular Cyclization of Guanidine Derivative 3; (S)-Benzyl-2-{[(benzyloxy)carbonyl]imino}-5-{(S)-2-[(tert-butoxycarbonyl)amino]-3-[(tert-butyl diphenylsilyl)oxy]propyl}imidazolidine-1-carboxylate (9) To a solution of 3 (3.2 g, 4 mmol) in anhydrous CH2Cl2 (20 mL) was added DIPEA (3.6 mL, 20 mmol), followed by Tf2O (0.76 mL, 4.5 mmol) dropwise at –78 °C under nitrogen atmosphere. After stirring for 1 h, the reaction was quenched by the addition of ammonium chloride (100 mL), the two layers were separated, and the aqueous layer was extracted with CH2Cl2 (100 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na2SO4, and concentrated under vacuum to give a colorless oil. The residue was purified by column chromatography on silica gel using 70:30 hexanes–EtOAc (v/v) as eluent to give 9 (2.81 g, 90%) as a white solid. TLC: Rf = 0.5 (hexanes–EtOAc, 1:1); mp 84 °C; [α]D 20 –7.5 (c 1.0, CHCl3). IR (neat): νmax = 3758, 3709, 3481, 3367, 2940, 1710, 1259, 1159 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.82–8.41 (br s, 1 H), 7.63–7.52 (m, 4 H), 7.47–7.27 (m, 16 H), 5.27 (s, 2 H), 5.16 (q, J = 12.4 Hz, 2 H), 4.63 (d, J = 8.9 Hz, 1 H), 4.34 (t, J = 8.4 Hz, 1 H), 3.79 (t, J = 8.4 Hz, 1 H), 3.72–3.60 (m, 2 H), 3.52 (dd, J = 9.9, 3.4 Hz, 1 H), 3.43 (d, J = 9.5 Hz, 1 H), 2.07 (t, J = 12.0 Hz, 1 H), 1.63 (t, J = 11.8 Hz, 1 H), 1.43 (s, 9 H), 1.01 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 156.0, 135.6, 135.6, 135.3, 133.1, 132.9, 130.1, 130.0, 128.8, 128.4, 128.2, 128.0, 127.9, 79.8, 68.4, 67.5, 66.5, 54.0, 48.7, 36.1, 28.5, 26.9, 19.3. HRMS (ESI): m/z calcd for [M + H]+: C43H53N4O7Si: 765.3662; found: 765.3678.
Corresponding Author
Publication History
Received: 18 May 2021
Accepted after revision: 13 June 2021
Accepted Manuscript online:
13 June 2021
Article published online:
01 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Willyard C. Nature 2017; 543: 7643
- 1b Arias CA, Murray BE. N. Engl. J. Med. 2015; 372: 1168
- 1c Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Antimicrob. Resist. Infect. Control 2019; 8: 137
- 1d Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Front. Microbiol. 2019; 10: 539
- 2 Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaeberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. Nature 2015; 517: 455
- 3 Ng V, Chan WC. Chem. Eur. J. 2016; 22: 12606
- 4 Atkinson DJ, Naysmith BJ, Furkert DP, Brimble MA. Beilstein J. Org. Chem. 2016; 12: 2325
- 5 Giltrap AM, Dowman LJ, Nagalingam G, Ochoa JL, Linington RG, Britton WJ, Payne RJ. Org. Lett. 2016; 18: 2788
- 6 Jin K, Sam LH, Po KH. L, Lin D, Zadeh EH. G, Chen S, Yuan Y, Li X. Nat. Commun. 2016; 7: 12394
- 7 Liu L, Wu S, Wang Q, Zhang M, Wang B, He G, Chen G. Org. Chem. Front. 2018; 5: 1431
- 8 Gao B, Chen S, Hou YN, Zhao YJ, Ye T, Xu Z. Org. Biomol. Chem. 2019; 17: 1141
- 9 Zong Y, Fang F, Meyer KJ, Wang L, Ni Z, Gao H, Lewis K, Zhang J, Rao Y. Nat. Commun. 2019; 10: 3268
- 10a Jad YE, Acosta GA, Naicker T, Ramtahal M, El-Faham A, Govender T, De la Torre BG, Albericio F. Org. Lett. 2015; 17: 6182
- 10b Parmar A, Iyer A, Vincent CS, Van Lysebetten D, Prior SH, Madder A, Taylor EJ, Singh I. Chem. Commun. 2016; 52: 6060
- 10c Yang H, Chen KH, Nowick JS. ACS Chem. Biol. 2016; 11: 1823
- 10d Monaim SA. H. A, Jad YE, Acosta GA, Naicker T, Ramchuran EJ, El-Faham A, Govender T, Kruger HG, De la Torre BG, Albericio F. RSC Adv. 2016; 6: 73827
- 10e Monaim SA. H. A, Jad YE, Ramchuran EJ, El-Faham A, Govender T, Kruger HG, De la Torre BG, Albericio F. ACS Omega 2016; 1: 1262
- 10f Monaim SA. H. A, Noki S, Ramchuran EJ, El-Faham A, Albericio F, De la Torre BG. Molecules 2017; 22: 1632
- 10g Monaim SA. H. A, Ramchuran EJ, El-Faham A, Albericio F, De la Torre BG. J. Med. Chem. 2017; 60: 7476
- 10h Wu C, Pan Z, Yao G, Wang W, Fang L, Su W. RSC Adv. 2017; 7: 1923
- 10i Jin K, Po KH. L, Wang S, Reuven JA, Wai CN, Lau HT, Chan TH, Chen S, Li X. Bioorg. Med. Chem. 2017; 25: 4990
- 10j Parmar A, Iyer A, Lloyd DG, Vincent CS, Prior SH, Madder A, Taylor EJ, Singh I. Chem. Commun. 2017; 53: 7788
- 10k Parmar A, Iyer A, Prior SH, Lloyd DG, Goh ET. L, Vincent CS, Pallag TP, Bachrati CZ, Breukink E, Madder A, Lakshminarayanan R, Taylor EJ, Singh I. Chem. Sci. 2017; 8: 8183
- 10l Schumacher CE, Harris PW. R, Ding X.-B, Krause B, Wright TH, Cook GM, Furkert DP, Brimble MA. Org. Biomol. Chem. 2017; 15: 8755
- 10m Ng V, Kuehne SA, Chan WC. Chem. Eur. J. 2018; 24: 9136
- 10n Parmar A, Lakshminarayanan R, Iyer A, Mayandi V, Goh ET. L, Lloyd DG, Chalasani ML. S, Verma NK, Prior SH, Beuerman RW, Madder A, Taylor EJ, Singh I. J. Med. Chem. 2018; 61: 2009
- 11a Parmar A, Prior SH, Iyer A, Vincent CS, Van Lysebetten D, Breukink E, Madder A, Taylor EJ, Singh I. Chem. Commun. 2017; 53: 2016
- 11b Yang H, Du Bois DR, Ziller JW, Nowick JS. Chem. Commun. 2017; 53: 2772
- 11c Chen KH, Le SP, Han X, Frias JM, Nowick JS. Chem. Commun. 2017; 53: 11357
- 11d Yang H, Wierzbicki M, Du Bois DR, Nowick JS. J. Am. Chem. Soc. 2018; 140: 14028
- 11e Monaim SA. H. A, Jad YE, El-Faham A, De la Torre BG, Albericio F. Bioorg. Med. Chem. 2018; 26: 2788
- 11f Yang H, Pishenko AV, Li X, Nowick JS. J. Org. Chem. 2020; 85: 1331
- 11g Gunjal VB, Thakare R, Chopra S, Reddy DS. J. Med. Chem. 2020; 63: 12171
- 12 Dhara S, Gunjal VB, Handore KL, Reddy DS. Eur. J. Org. Chem. 2016; 4289
- 13a Rudolph J, Hannig F, Theis H, Wischnat R. Org. Lett. 2001; 3: 3153
- 13b Peoples AJ, Hughes D, Ling LL, Millett W, Nitti A, Spoering A, Steadman VA, Chiva JY. C, Lazarides L, Jones MK, Poullence KG, Lewis K. WO2014089053 2014
- 13c Peoples, A. J.; Hughes, D.; Ling, L. L.; Millett, W.; Nitti, A.; Spoering, A.; Steadman, V. A.; Chiva, J. Y. C.; Lazarides, L.; Jones, M. K.; Poullence, K. G.; Lewis, K. US20140194345, 2014.
- 14 Craig W, Chen J, Richardson D, Thorpe R, Yuan Y. Org. Lett. 2015; 17: 4620
- 15a Sangeetha D, Nayani K, Mainkar PS, Chandrasekhar S. Synlett 2019; 30: 2268
- 15b Bukya H, Nayani K, Gangireddy P, Mainkar PS. Eur. J. Org. Chem. 2020; 5358
- 16 Carneiro VM. T, Avila CM, Balunas MJ, Gerwick WH, Pilli RA. J. Org. Chem. 2014; 79: 630
- 17 Bonini C, Chiummiento L, Lopardo MT, Pullez M, Colobert F, Solladie G. Tetrahedron Lett. 2003; 44: 2695
- 18a Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong KS, Kwong HL, Morikawa K, Wang ZM, Xu D, Zhang X.-L. J. Org. Chem. 1992; 57: 2768
- 18b Kolb HC, Sharpless KB. Chem Rev. 1994; 94: 2483
- 19a Austad BA, Calkins TL, Fang FG, Horstmann TE, Hu Y, Lewis BM, Niu X, Noland TA, Orr JD, Schnaderbeck MJ, Zhang H, Asakawa N, Asai N, Chiba H, Hasebe T, Hoshino Y, Ishizuka H, Kajima T, Kayano A, Komatsu Y, Kubota M, Kuroda H, Miyazawa M, Tagami K, Watanabe T. Synlett 2013; 24: 333
- 19b Sun D.-Y, Han G.-Y, Gong J.-X, Nay B, Li X.-W, Guo Y.-W. Org. Lett. 2017; 19: 714
- 20 Synthetic Procedure for Guanidine Derivative 3 Triphenylphosphine (2.0 g, 7.2 mmol) was added to a stirred solution of azide 8 (1.27 g, 2.5 mmol) in THF–H2O (15 mL, 3:1) at 0 °C. Then the reaction was allowed to warm to room temperature and stirred for 12 h. After this period, to the reaction Goodman’s reagent (N,N'-di-Cbz-1H-pyrazole-1-carboxamidine, 968 mg, 2.5 mmol) was added, and the mixture was stirred for another 6 h. The reaction was extracted with EtOAc (2 × 100 mL), the organic layer was washed with brine (75 mL), dried over anhydrous Na2SO4, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using 85:15 hexanes–EtOAc (v/v) as eluent to give 3 (1.7 g, 85%) as a white solid. TLC: Rf = 0.5 (hexanes–EtOAc, 7:3); mp 92 °C; [α]D 20 +6.2 (c 1.1, CHCl3). IR (neat): νmax = 3370, 3334, 2946, 1640, 1057 cm–1. 1H NMR (400 MHz, CDCl3): δ = 11.65 (s, 1 H), 8.71–8.68 (br s, 1 H), 7.57–7.50 (m, 4 H), 7.40–7.16 (m, 16 H), 5.10 (s, 2 H), 5.04 (s, 2 H), 4.82 (d, J = 8.8 Hz, 1 H), 4.55 (s, 1 H), 3.86–3.75 (m, 1 H), 3.75–3.59 (m, 3 H), 3.51 (dd, J = 10.3, 3.7 Hz, 1 H), 3.23–3.08 (m, 1 H), 1.65–1.53 (m, 1 H), 1.37 (s, 9 H), 1.35–1.25 (m, 1 H), 0.98 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 163.6, 157.3, 156.1, 153.5, 136.7, 135.6, 135.5, 134.6, 132.9, 132.7, 129.9, 129.8, 128.6, 128.5, 128.4, 128.3, 128.1, 127.8, 127.8, 80.1, 68.0, 67.0, 66.3, 48.6, 46.3, 38.1, 28.3, 26.8, 19.2. HRMS (ESI): m/z calcd for [M + H]+: C43H55N4O8Si: 783.3779; found: 783.3783.
- 21 Synthetic Procedure for Intramolecular Cyclization of Guanidine Derivative 3; (S)-Benzyl-2-{[(benzyloxy)carbonyl]imino}-5-{(S)-2-[(tert-butoxycarbonyl)amino]-3-[(tert-butyl diphenylsilyl)oxy]propyl}imidazolidine-1-carboxylate (9) To a solution of 3 (3.2 g, 4 mmol) in anhydrous CH2Cl2 (20 mL) was added DIPEA (3.6 mL, 20 mmol), followed by Tf2O (0.76 mL, 4.5 mmol) dropwise at –78 °C under nitrogen atmosphere. After stirring for 1 h, the reaction was quenched by the addition of ammonium chloride (100 mL), the two layers were separated, and the aqueous layer was extracted with CH2Cl2 (100 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous Na2SO4, and concentrated under vacuum to give a colorless oil. The residue was purified by column chromatography on silica gel using 70:30 hexanes–EtOAc (v/v) as eluent to give 9 (2.81 g, 90%) as a white solid. TLC: Rf = 0.5 (hexanes–EtOAc, 1:1); mp 84 °C; [α]D 20 –7.5 (c 1.0, CHCl3). IR (neat): νmax = 3758, 3709, 3481, 3367, 2940, 1710, 1259, 1159 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.82–8.41 (br s, 1 H), 7.63–7.52 (m, 4 H), 7.47–7.27 (m, 16 H), 5.27 (s, 2 H), 5.16 (q, J = 12.4 Hz, 2 H), 4.63 (d, J = 8.9 Hz, 1 H), 4.34 (t, J = 8.4 Hz, 1 H), 3.79 (t, J = 8.4 Hz, 1 H), 3.72–3.60 (m, 2 H), 3.52 (dd, J = 9.9, 3.4 Hz, 1 H), 3.43 (d, J = 9.5 Hz, 1 H), 2.07 (t, J = 12.0 Hz, 1 H), 1.63 (t, J = 11.8 Hz, 1 H), 1.43 (s, 9 H), 1.01 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 156.0, 135.6, 135.6, 135.3, 133.1, 132.9, 130.1, 130.0, 128.8, 128.4, 128.2, 128.0, 127.9, 79.8, 68.4, 67.5, 66.5, 54.0, 48.7, 36.1, 28.5, 26.9, 19.3. HRMS (ESI): m/z calcd for [M + H]+: C43H53N4O7Si: 765.3662; found: 765.3678.