Subscribe to RSS
DOI: 10.1055/a-1533-3597
Recent Advances in Visible-Light-Promoted Copper Catalysis in Organic Reactions
This work was financially supported by the National Natural Science Foundation of China (NSFC-22071073, 21772218, and 21821002), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and the State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry.
Abstract
In recent years, visible-light-mediated copper photocatalysis has emerged as an attractive strategy for the diverse construction of basic bonds in an ecologically benign and cost-effective fashion. The intense activity in these areas has been stimulated by the distinctive properties of copper photocatalysts and has led to the rapid development and expansion of their applications. In this review, we focus on a series of significant achievements in the use of copper complexes as standalone photocatalysts in organic reactions to exhibit their high flexibility and potential in synthetic chemistry.
1 Introduction
2 Redox Coupling Reactions
2.1 Carbon–Nitrogen Redox Coupling Reactions
2.2 Carbon–Carbon Redox Coupling Reactions
3 Oxidative Coupling Reactions
4 Difunctionalization of Olefins
5 C–H Bond Functionalization
6 Radical Alkylation of Imines
7 Conclusions and Outlook
Key words
visible-light-mediated - copper photocatalysis - cross-coupling - asymmetric - functionalizationPublication History
Received: 10 April 2021
Accepted after revision: 22 June 2021
Accepted Manuscript online:
22 June 2021
Article published online:
27 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
-
1 Current address: Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- 2 Zimmerman HE. Pure Appl. Chem. 2006; 78: 2193
- 3a König B. Eur. J. Org. Chem. 2017; 1979
- 3b Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 3c Zho Q, Zou Y, Lu L, Xiao W. Angew. Chem. Int. Ed. 2019; 58: 1586
- 4a Xuan J, Xiao W. Angew. Chem. Int. Ed. 2012; 51: 6828
- 4b Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
- 4c Schultz DM, Yoon TP. Science 2014; 343: 1239176
- 4d Liu Q, Wu L. Natl. Sci. Rev. 2017; 4: 359
- 5a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 5b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 5c Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 5d Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
- 5e Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 5f Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 5g Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 5h Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 6a Paria S, Reiser O. ChemCatChem 2014; 6: 2477
- 6b Fumagalli G, Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
- 6c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
- 7a Reiser O. Acc. Chem. Res. 2016; 49: 1990
- 7b Larsen CB, Wenger OS. Chem. Eur. J. 2018; 24: 2039
- 7c Hernandez-Perez AC, Collins SK. Acc. Chem. Res. 2016; 49: 1557
- 8a Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
- 8b Cheng W, Shang R. ACS Catal. 2020; 10: 9170
- 9a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 9b Fischer C, Koenig B. Beilstein J. Org. Chem. 2011; 7: 59
- 9c Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
- 9d Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
- 10 Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 11 Creutz SE, Lotito KJ, Fu GC, Peters JC. Science 2012; 338: 647
- 12a Uyeda C, Tan Y, Fu GC, Peters JC. J. Am. Chem. Soc. 2013; 135: 9548
- 12b Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC. Angew. Chem. Int. Ed. 2013; 52: 5129
- 12c Ziegler DT, Choi J, Muñoz-Molina JM, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2013; 135: 13107
- 12d Do HQ, Bachman S, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2014; 136: 2162
- 12e Tan Y, Muñoz-Molina JM, Fu GC, Peters JC. Chem. Sci. 2014; 5: 2831
- 12f Ratani TS, Bachman S, Fu GC, Peters JC. J. Am. Chem. Soc. 2015; 137: 13902
- 12g Ahn JM, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 18101
- 13 Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science 2016; 351: 681
- 14 Ahn JM, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 18101
- 15 Zhao W, Wurz RP, Peters JP, Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
- 16 Matier CD, Schwaben J, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 17707
- 17 Lu B, Cheng Y, Chen LY, Chen JR, Xiao W. ACS Catal. 2019; 9: 8159
- 18 Dong X, Zhang Y, Ma C, Gu Q, Wang F, Li Z, Jiang S, Liu X. Nat. Chem. 2019; 11: 1158
- 19 Hazra A, Lee MT, Chiu JF, Lalic G. Angew. Chem. Int. Ed. 2018; 57: 5492
- 20 Mao Y, Zhao WX, Lu S, Yu L, Wang Y, Liang Y, Ni SY, Pan Y. Chem. Sci. 2020; 11: 4939
- 21 Xia H, Li Z, Gu Q, Dong X, Fang J, Du X, Wang L, Liu X. Angew. Chem. Int. Ed. 2020; 59: 16926
- 22 Liang L, Niu H, Li R, Wang Y, Yan J, Li C, Hai M. Org. Lett. 2020; 22: 6842
- 23 Minozzi C, Caron A, Grenier-Petel JC, Santandrea J, Collins SK. Angew. Chem. Int. Ed. 2018; 57: 5477
- 24 Caron A, Morin É, Collins SK. ACS Catal. 2019; 9: 9458
- 25a Sagadevan A, Hwang KC. Adv. Synth. Catal. 2012; 354: 3421
- 25b Sagadevan A, Ragupathi A, Hwang KC. Angew. Chem. Int. Ed. 2015; 54: 13896
- 25c Sagadevan A, Ragupathi A, Lin C, Hwu JR, Hwang KC. Green Chem. 2015; 17: 1113
- 25d Sagadevan A, Charpe VP, Hwang KC. Catal. Sci. Technol. 2016; 6: 7688
- 26 Sagadevan A, Lyu PC, Hwang KC. Green Chem. 2016; 18: 4526
- 27 Sagadevan A, Charpe VP, Ragupathi A, Hwang KC. J. Am. Chem. Soc. 2017; 139: 2896
- 28 Das DK, Pampana VK, Hwang KC. Chem. Sci. 2018; 9: 7318
- 29 Sagadevan A, Pampana VK, Hwang KC. Angew. Chem. Int. Ed. 2019; 58: 3838
- 30 Charpe VP, Sagadevan A, Hwang KC. Green Chem. 2020; 22: 4426
- 31 Lan X, Wang N, Xing Y. Eur. J. Org. Chem. 2017; 5821
- 32a Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
- 32b Paria S, Pirtsch M, Kais V, Reiser O. Synthesis 2013; 45: 2689
- 32c Bagal DB, Kachkovskyi G, Knorn M, Rawner T, Bhanage BM, Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
- 32d Knorn M, Rawner T, Czerwieniec R, Reiser O. ACS Catal. 2015; 5: 5186
- 33 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; in press
- 34 Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
- 35 Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
- 36 Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
- 37 Engl S, Reiser O. ACS Catal. 2020; 10: 9899
- 38a Fayad R, Engl S, Danilov EO, Hauke CE, Reiser O, Castellano FN. J. Phys. Chem. Lett. 2020; 11: 5345
- 38b Engl S, Reiser O. Eur. J. Org. Chem. 2020; 1523
- 39 Kochi JK. J. Am. Chem. Soc. 1962; 84: 2121
- 40 Lian P, Long W, Li J, Zheng Y, Wan X. Angew. Chem. Int. Ed. 2020; 59: 23603
- 41 Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
- 42 Liu Z, Chen H, Lv Y, Tan X, Shen H, Yu H, Li C. J. Am. Chem. Soc. 2018; 140: 6169
- 43 He J, Chen C, Fu GC, Peters JC. ACS Catal. 2018; 8: 11741
- 44a Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
- 44b Xiong Y, Su Y, Zhang G. Org. Lett. 2018; 20: 6250
- 45a Xiong Y, Ma X, Zhang G. Org. Lett. 2019; 21: 1699
- 45b Xiong Y, Zhang G. Org. Lett. 2019; 21: 7873
- 46a Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Org. Lett. 2020; 22: 1490
- 46b Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal. 2019; 9: 4470
- 47 Yu X, Zhao Q, Chen J, Chen J, Xiao W. Angew. Chem. Int. Ed. 2018; 57: 15731
- 48 Chen J, He B, Wang P, Yu X, Zhao Q, Chen J, Xiao W. Org. Lett. 2019; 21: 4359
- 49 Lou J, Ma J, Xu BH, Zhou Y, Yu Z. Org. Lett. 2020; 22: 5202
- 50 Lei W, Wang T, Feng K, Wu L, Liu Q. ACS Catal. 2017; 7: 7941
- 51a Davies HM. L. Angew. Chem. Int. Ed. 2006; 45: 6422
- 51b Davies HM. L, Du BJ, Yu J. Chem. Soc. Rev. 2011; 40: 1855
- 52 Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646
- 53 Nicholls TP, Constable GE, Robertson JC, Gardiner MG, Bissember AC. ACS Catal. 2016; 6: 451
- 54 Meng Q, Gao X, Lei T, Liu Z, Zhan F, Li Z, Zhong J, Xiao H, Feng K, Chen B, Tao Y, Tung C, Wu L. Sci. Adv. 2017; 3: e1700666
- 55 Song Z, Liu Z, Gan Q, Lei T, Tung C, Wu L. Org. Lett. 2020; 22: 832
- 56 Michelet B, Deldaele C, Kajouj S, Moucheron C, Evano G. Org. Lett. 2017; 19: 3576
- 57 Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 15841
- 58 Lyu X, Huang S, Song H, Liu Y, Wang Q. Org. Lett. 2019; 21: 5728
- 59 Wang C, Yu Y, Liu W, Duan W. Org. Lett. 2019; 21: 9147
- 60 Zheng L, Jiang Q, Bao H, Zhou B, Luo S, Jin H, Wu H, Liu Y. Org. Lett. 2020; 22: 8888
- 61a Li C, Chen B, Ma X, Mo X, Zhang G. Angew. Chem. Int. Ed. 2021; 60: 2130
- 61b Ma X, Zhang G. Chin. J. Chem. 2020; 38: 1299
- 62 Cao Z, Li J, Sun Y, Zhang H, Mo X, Cao X, Zhang G. Chem. Sci. 2021; 12: 4836
- 63 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
- 64 Han B, Li YJ, Yu Y, Gong L. Nat. Commun. 2019; 10: 3804