Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(21): 4703-4710
DOI: 10.1055/a-1588-0072
DOI: 10.1055/a-1588-0072
special topic
Asymmetric C–H Functionalization
Ruthenium(II)/Chiral Carboxylic Acid Catalyzed Enantioselective C–H Functionalization of Sulfoximines
This work was supported in part by the Japan Society for the Promotion of Science (JSPS; KAKENHI grant number JP20H02730 and JP20H04794 in Hybrid Catalysis).
Abstract
Ruthenium(II)-catalyzed enantioselective C–H functionalization reactions of sulfoximines with sulfoxonium ylides are described. The combination of [RuCl2(p-cymene)]2 and a pseudo-C 2-symmetric binaphthyl monocarboxylic acid furnished the S-chiral products in 76:24 to 92:8 er.
Key words
ruthenium catalysis - C–H activation - asymmetric catalysis - chiral carboxylic acid - sulfoximineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1588-0072.
- Supporting Information
Publication History
Received: 13 July 2021
Accepted after revision: 16 August 2021
Accepted Manuscript online:
16 August 2021
Article published online:
11 October 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1b Yang Y.-F, Hong X, Yu J.-Q, Houk KN. Acc. Chem. Res. 2017; 50: 2853
- 1c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 1d Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 1e Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1f Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
- 1g Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
- 1h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1i Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
- 1j Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: eabd5992
- 2 Oi S, Fukita S, Hirata N, Watanuki N, Miyano S, Inoue Y. Org. Lett. 2001; 3: 2579
- 3a Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 3b Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 3c De Sarkar S, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
- 3d Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 3e Shan C, Zhu L, Qu L.-B, Bai R, Lan Y. Chem. Soc. Rev. 2018; 47: 7552
- 4a Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 4b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 4c Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
- 4d Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
- 4e Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
-
4f
Shao Q,
Wu K,
Zhuang Z,
Qian S,
Yu J.-Q.
Acc. Chem. Res. 2020; 53: 833
- 4g Achar TK, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
- 4h Gu Q, Wu Z.-J, You S.-L. Bull. Chem. Soc. Jpn. 2021; 94: 641
- 5 Li Z.-Y, Lakmal HH. C, Qian X, Zhu Z, Donnadieu B, McClain SJ, Xu X, Cui X. J. Am. Chem. Soc. 2019; 141: 15730
- 6 Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
- 7 Dhawa U, Connon R, Oliveira JC. A, Steinbock R, Ackermann L. Org. Lett. 2021; 23: 2760
- 8a Xing Q, Chan C.-M, Yeung Y.-W, Yu W.-Y. J. Am. Chem. Soc. 2019; 141: 3849
- 8b Miyazawa T, Suzuki T, Kumagai Y, Takizawa K, Kikuchi T, Kato S, Onoda A, Hayashi T, Kamei Y, Kamiyama F, Anada M, Kojima M, Yoshino T, Matsunaga S. Nat. Catal. 2020; 3: 851
- 8c Hayashi H, Uchida T. Eur. J. Org. Chem. 2020; 909
- 9a Zhang F.-L, Hong K, Li T.-J, Park H, Yu J.-Q. Science 2016; 351: 252
- 9b Gandeepan P, Ackermann L. Chem 2018; 4: 199
- 9c Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 9d Bag D, Verma PK, Sawant SD. Chem. Asian J. 2020; 15: 3225
- 10a Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 10b Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
- 10c Mas-Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2020; 60: 13198
- 10d Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
- 10e Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
- 11a Satake S, Kurihara T, Nishikawa K, Mochizuki T, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Nat. Catal. 2018; 1: 585
- 11b Li G, Jiang J, Xie H, Wang J. Chem. Eur. J. 2019; 25: 4688
- 12a Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 12b Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 12c Kurihara T, Kojima M, Yoshino T, Matsunaga S. Asian J. Org. Chem. 2019; 9: 368
- 13a Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 13b Ackermann L. Chem. Rev. 2011; 111: 1315
- 13c Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 13d Alharis RA, McMullin CL, Davies DL, Singh K, Macgregor SA. J. Am. Chem. Soc. 2019; 141: 8896
- 13e Wang L, Carrow BP. ACS Catal. 2019; 9: 6821
- 13f Rogge T, Oliveira JC. A, Kuniyil R, Hu L, Ackermann L. ACS Catal. 2020; 10: 10551
- 14a Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882
- 14b Shi B.-F, Zhang Y.-H, Lam JK, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
- 14c Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 19598
- 14d Cheng X.-F, Li Y, Su Y.-M, Yin F, Wang J.-Y, Sheng J, Vora HU, Wang X.-S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 1236
- 14e Chu L, Xiao K.-J, Yu J.-Q. Science 2014; 346: 451
- 14f Xiao K.-J, Lin DW, Miura M, Zhu R.-Y, Gong W, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 8138
-
14g
Chen G,
Gong W,
Zhuang Z,
Andra MS,
Chen Y.-Q,
Hong X,
Yang Y.-F,
Liu T,
Houk KN,
Yu J.-Q.
Science 2016; 353: 1023
- 14h Shao Q, Wu Q.-F, He J, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 5322
-
14i
Hu L,
Shen P.-X,
Shao Q,
Hong K,
Qiao JX,
Yu J.-Q.
Angew. Chem. Int. Ed. 2019; 58: 2134
- 14j Romero EA, Chen G, Gembicky M, Jazzar R, Yu J.-Q, Bertrand G. J. Am. Chem. Soc. 2019; 141: 16726
- 15a Gwon D, Park S, Chang S. Tetrahedron 2015; 71: 4504
- 15b Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
- 15c Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
- 15d Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 18154
- 15e Liu Y.-H, Li P.-X, Yao Q.-J, Zhang Z.-Z, Huang D.-Y, Le MD, Song H, Liu L, Shi B.-F. Org. Lett. 2019; 21: 1895
- 15f Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
- 15g Liu L, Song H, Liu Y.-H, Wu L.-S, Shi B.-F. ACS Catal. 2020; 10: 7117
- 15h Liu W, Yang W, Zhu J, Guo Y, Wang N, Ke J, Yu P, He C. ACS Catal. 2020; 10: 7207
- 15i Huang L.-T, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Org. Lett. 2020; 22: 8256
- 15j Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 4271
- 16 Zhou T, Qian P.-F, Li J.-Y, Zhou Y.-B, Li H.-C, Chen H.-Y, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 6810
- 17a Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
- 17b Wiezorek S, Lamers P, Bolm C. Chem. Soc. Rev. 2019; 48: 5408
- 17c Mäder P, Kattner L. J. Med. Chem. 2020; 63: 14243
- 17d Han Y, Xing K, Zhang J, Tong T, Shi Y, Cao H, Yu H, Zhang Y, Liu D, Zhao L. Eur. J. Med. Chem. 2021; 209: 112885
- 17e Ghosh P, Ganguly B, Das S. Asian J. Org. Chem. 2020; 9: 2035
- 18a Dong W, Wang L, Parthasarathy K, Pan F, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 11573
- 18b Yu D.-G, de Azambuja F, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 2754
- 18c Parthasarathy K, Bolm C. Chem. Eur. J. 2014; 20: 4896
- 18d Dong W, Parthasarathy K, Cheng Y, Pan F, Bolm C. Chem. Eur. J. 2014; 20: 15732
- 18e Cheng Y, Bolm C. Angew. Chem. Int. Ed. 2015; 54: 12349
- 18f Chinnagolla RK, Vijeta A, Jeganmohan M. Chem. Commun. 2015; 51: 12992
- 18g Cheng Y, Dong W, Parthasarathy K, Bolm C. Org. Lett. 2017; 19: 726
- 18h Aher YN, Lade DM, Pawar AB. Chem. Commun. 2018; 54: 6288
- 18i Xie HS, Lan J, Gui J, Chen F, Jiang H, Zeng W. Adv. Synth. Catal. 2018; 360: 3534
- 19a Yadav MR, Rit RK, Sahoo AK. Chem. Eur. J. 2012; 18: 5541
- 19b Rit RK, Yadav MR, Sahoo AK. Org. Lett. 2014; 16: 968
- 19c Ghosh K, Rit RK, Ramesh E, Sahoo AK. Angew. Chem. Int. Ed. 2016; 55: 7821
- 19d Raghuvanshi K, Zell D, Ackermann L. Org. Lett. 2017; 19: 1278
- 19e Shankar M, Rit RK, Sau S, Mukherjee K, Gandon V, Sahoo AK. Chem. Sci. 2020; 11: 10770
- 20a Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
- 20b Sun Y, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 15539
- 20c Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
For selected recent reviews on C–H functionalization, see:
For selected reviews on Ru-catalyzed C–H functionalization, see:
For selected recent general reviews on enantioselective C–H functionalization, see:
For recent studies on enantioselective C–H amidation via an outer-sphere mechanism using Ru catalysts, see:
For other examples, see review:
For seminal work on chiral transient directing-group-assisted enantioselective C–H functionalization, see:
For other examples, see reviews:
For seminal work and selected examples, see:
For a review on C–H and N–H functionalization of sulfoximines, see:
For selected examples, see:
For other examples, see ref. 17e.
Sulfoximines are used as removable and reusable directing groups for C–H functionalization. For selected examples, see:
For other examples, see also ref. 17e.
For enantioselective variants, see: