Planta Med 2022; 88(09/10): 762-773
DOI: 10.1055/a-1787-1342
Biological and Pharmacological Activity
Original Papers

Chemical Constituents of Ulmus minor subsp. minor Fruits Used in the Italian Phytoalimurgic Tradition and Their Anti-inflammatory Activity Evaluation[ # ]

Michele DʼAngiolo
1   Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
,
1   Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
2   Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute”, Università di Pisa, Pisa, Italy
3   CISUP, Centre for Instrumentation Sharing, Pisa University, Pisa, Italy
,
Fabiano Camangi
1   Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
,
Giorgia Magliocca
4   Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
5   PhD Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
,
4   Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
,
1   Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
2   Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute”, Università di Pisa, Pisa, Italy
3   CISUP, Centre for Instrumentation Sharing, Pisa University, Pisa, Italy
,
Stefania Marzocco
4   Dipartimento di Farmacia, Università di Salerno, Fisciano (SA), Italy
› Author Affiliations
Supported by: Fondi di Ateneo PRA, University of Pisa PRA_2017_30
Supported by: Università degli Studi di Salerno FARB 2021-ORSA210342

Abstract

The phytochemical investigation of Ulmus minor subsp. minor samaras EtOAc and n-BuOH extracts is reported in this work for the first time, resulting in the isolation and characterization of twenty compounds (1 – 20) including one new flavan-3-ol (1), one new trihydroxy fatty acid (2), and two glycosylated flavonoids (6 – 7) whose NMR data are not available in the literature. Structure elucidation of the isolated compounds was obtained by 1D and 2D NMR and HRESIMS data. Prior to further pharmacological investigations, the extracts (100 – 6.25 µg/mL) and compounds 1 – 12 (50 – 5 µM) were tested for their influence on viability of a murine macrophage cell line (J774A.1). Subsequently, extracts and compounds that did not impede viability, were studied for their inhibitory effect on some mediators of inflammation in J774A.1 cells stimulated with lipopolysaccharide of Escherichia coli (LPS). The NO release and the expression of iNOS and COX-2 were then evaluated and both extracts (50 – 6.25 µg/mL) and compounds (20 – 5 µM) significantly inhibited NO release as well as iNOS and COX-2 expression in macrophages. These data highlight the anti-inflammatory properties of several isolated compounds from U. minor samaras supporting their possible alimentary use.

# Dedicated to Professor Dr. A. Douglas Kinghorn on the occasion of his 75th birthday.


Supporting Information



Publication History

Received: 12 December 2021

Accepted after revision: 02 March 2022

Accepted Manuscript online:
03 March 2022

Article published online:
25 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Grossoni P, Bruschi P, Bussotti F, Pollastrini M, Selvi F. Trattato di Botanica Forestale. 2 Angiosperme. Milano: Cedam; 2020: 133-144
  • 2 Whittemore AT, Xia ZL. Genome size variation in elms (Ulmus spp.) and related genera. HortScience 2017; 52: 547-553
  • 3 Cadullo G, de Rigo D. Ulmus – elms in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A. eds. European Atlas of Forest Tree Species. Luxembourg: Publ. Off. EU; 2016: 186-188
  • 4 POW. Plants of the World Online. Kew: Royal Botanic Gardens; 2019. Accessed November 01, 2021 at: www.plantsoftheworldonline.org
  • 5 Pignatti S. Flora DʼItalia. Vol. II. Bologna: Edagricole; 2017: 655-657
  • 6 Motti R. Wild plants used as herbs and spices in Italy: An ethnobotanical review. Plants (Basel) 2021; 10: 563
  • 7 Atzei AD. Le piante nella tradizione popolare della Sardegna. Sassari: Carlo Delfino Editore; 2009: 444-445
  • 8 Guarrera PM. Usi e tradizioni della flora italiana. Medicina popolare ed etnobotanica. Roma: Aracne Ed.; 2006: 210
  • 9 Scortegagna S. Flora popolare veneta. Nomi e usi tradizionali delle piante del Veneto. Verona: WBA Monographs 3. Wba projet srl; 2016: 87-88
  • 10 Lee MK, Sung SH, Lee HS, Cho HJ, Kim YC. Lignan and neolignan glycosides from Ulmus davidiana var. japonica . Arch Pharm Res 2001; 24: 198-201
  • 11 Gu ZY, Feng CY, Li SS, Yin DD, Wu Q, Zhang L, Wang LS. Identification of flavonoids and chlorogenic acids in elm fruits from the genus Ulmus and their antioxidant activity. J Sep Sci 2019; 42: 2883-3042
  • 12 Jung JM, Heo SI, Wang MH. HPLC analysis and antioxidant activity of Ulmus davidiana and some flavonoids. Food Chem 2010; 120: 313-318
  • 13 Ma Q, Wei R, Shang D, Sang Z, Liu W, Cao Z. Hepatoprotective and neuroprotective flavanes from the fruits of Ulmus pumila L. (Ulmaceae). Pak J Pharm Sci 2019; 32: 2059-2064
  • 14 Yang HH, Son JK, Jung B, Zheng MS, Kim JR. Epifriedelanol from the root bark of Ulmus davidiana inhibits cellular senescence in human primary cells. Planta Med 2010; 77: 441-449
  • 15 Wegner R, Schulz S, Meiners T, Hadwich K, Hilker M. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor . J Chem Ecol 2001; 27: 499-515
  • 16 Martin D, Garcia-Vallejo MC, Pajares JA, Lopez D, Diez JJ. Elm bark components and their potential influence on bark beetle feeding. Inv Agrar-Sist Recursos Fores 2004; 13: 227-235
  • 17 Rofouei MK, Kojoori SMH, Pourasil-Moazeni RS. Optimization of chlorogenic acid extraction from Elm tree, Ulmus minor Mill., fruits, using response surface methodology. Sep Purif Technol 2021; 256: 117773-117780
  • 18 Ma Q, Xie H, Li S, Zhang R, Zhang M, Wei X. Flavonoids from the pericarps of Litchi chinensis . J Agric Food Chem 2014; 62: 1073-1078
  • 19 De Marino S, Borbone N, Gala F, Zollo F, Fico G, Piagiotti R, Iorizzi M. New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity. J Agric Food Chem 2006; 54: 7508-7516
  • 20 Yang Y, Tan N, Wang L, Wang S, Jia R, Jiang L, Fu X. Flavonoids and bioactivity of Sageretia gracilis . Tianran Chanwu Yanjiu Yu Kaifa 2003; 15: 203-205 211
  • 21 De Abreu MB, Temraz A, Malafronte N, Gonzalez-Mujica F, Duque S, Braca A. Phenolic derivatives from Ruprechtia polystachya and their inhibitory activity on the glucose-6-phosphatase system. Chem Biodivers 2011; 8: 2126-2134
  • 22 Geiger H, De Groot-Pfleiderer W. Flavone and flavonol glycosides of Taxodium distichum . Phytochemistry 1979; 18: 1709-1710
  • 23 Wang YF, Cao JX, Efferth T, Lai GF, Luo SD. Cytotoxic and new tetralone derivatives from Berchemia floribunda (Wall.) Brongn. Chem Biodivers 2006; 3: 646-653
  • 24 Xu J, Tan N. Chemical constituents from branches and leaves of Cupressus duolouxiana . Zhong Yao Cai 2007; 30: 669-671
  • 25 Arisawa M, Handa SS, McPherson DD, Lankin DC, Cordell GA, Fong HHS, Farnsworth NR. Plant anticancer agents XXIX. Cleomiscosin A from Simaba multiflora, Soulamea soulameoides, and Matayba arborescens . J Nat Prod 1984; 47: 300-307
  • 26 Choi HG, Park YM, Lu Y, Chang HW, Na MK, Lee SH. Inhibition of prostaglandin D2 production by trihydroxy fatty acids isolated from Ulmus davidiana var. japonica . Phytother Res 2013; 27: 1376-1380
  • 27 Zheng MS, Li G, Li Y, Seo CS, Lee YZ, Jung JS, Song DK, Bae HB, Kwak SH, Chang HW, Kim JR, Son JK. Protective constituents against sepsis in mice from the root barks of Ulmus davidiana var. japonica . Arc Pharm Res 2011; 34: 1443-1450
  • 28 Xie C, Veitch NC, Houghton PJ, Simmonds MSJ. Flavonoids glycosides and isoquinoline alkaloids from Corydalis bungeana . Phytochemistry 2004; 65: 3041-3047
  • 29 Kazuma K, Noda N, Suzuki M. Malonylated flavonol glycosides from the petals of Clitoria ternatea . Phytochemistry 2003; 62: 229-237
  • 30 Kirmizibekmez H, Bassarello C, Piacente S, Celep E, Atay I, Mercanoglu G, Yesilada E. Phenolic compounds from Hypericum calycinum and their antioxidant activity. Nat Prod Commun 2009; 4: 531-534
  • 31 Pauli GF, Poetsch F, Nahrstedt A. Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem Anal 1998; 9: 177-185
  • 32 Fukuoka M. Chemical and toxicological studies on bracken fern, Pteridium aquilinum var. latiusculum. VI. Isolation of 5-O-caffeoylshikimic acid as an antithiamine factor. Chem Pharm Bull (Tokyo) 1982; 30: 3219-3224
  • 33 Agrawal PK. Carbon-13 NMR of Flavonoid. Amsterdam: Elsevier; 1989: 334-337 341-342
  • 34 Parejo I, Viladomat F, Bastida J, Schmeda-Hirshmann G, Burillo J, Codina C. Bioguided isolation and identification of the non volatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J Agric Food Chem 2004; 52: 1890-1897
  • 35 Merfort I, Wendisch D. Flavonoids glucuronides from the flowers of Arnica montana . Planta Med 1988; 54: 247-250
  • 36 De Leo M, Iannuzzi AM, Germanò MP, DʼAngelo V, Camangi F, Sevi F, Diretto G, De Tommasi N, Braca A. Comparative chemical analysis of six ancient Italian sweet cherry (Prunus avium L.) varieties showing antiangiogenic activity. Food Chem 2021; 360: 129999
  • 37 Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci 1997; 2: d12-d26
  • 38 Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-κB activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001; 166: 3873-3881
  • 39 Schmidt HHW, Pollock JS, Nakane M, Förstermann U, Murad F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium 1992; 13: 427-434
  • 40 Heba G, Krzeminski T, Porc M, Grzyb J, Dembinska-Kiec A. Relation between expression of TNF alpha, iNOS, VEGF mRNA and development of heart failure after experimental myocardial infarction in rats. J Physiol Pharmacol 2001; 52: 39-52
  • 41 Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxidesynthase enzymes. Kidney Int 2007; 71: 290-297
  • 42 Pignatti S. Flora DʼItalia. Vol. IV. Bologna: Edagricole; 2019: 598
  • 43 Iannuzzi AM, Moschini R, De Leo M, Pineschi C, Balestri F, Cappiello M, Braca A, Del-Corso A. Chemical profile and nutraceutical features of Salsola soda (agretti): Anti-inflammatory and antidiabetic potential of its flavonoids. Food Biosci 2020; 37: 100713
  • 44 Cioffi G, Sanogo R, Vassallo A, Dal Piaz F, Autore G, Marzocco S, De Tommasi N. Pregnane glycosides from Leptadenia pyrotechnica . J Nat Prod 2006; 69: 625-635
  • 45 Adesso S, Paterniti I, Cuzzocrea S, Fujioka M, Autore G, Magnus T, Pinto A, Marzocco S. AST-120 reduces neuroinflammation induced by indoxyl sulfate in glial cells. J Clin Med 2018; 7: 365
  • 46 Sun L, Chen K, Jiang Z, Chen X, Ma J, Ma Q, Duan W. Indometacin inhibits the proliferation and activation of human pancreatic stellate cells through the downregulation of COX-2. Oncol Rep 2018; 39: 2243-2251
  • 47 Rapa SF, Magliocca G, Pepe G, Amodio G, Autore G, Campiglia P, Marzocco S. Protective effect of pomegranate on oxidative stress and inflammatory response induced by 5-fluorouracil in human keratinocytes. Antioxidants (Basel) 2021; 10: 203