Subscribe to RSS
DOI: 10.1055/a-1790-2858
Bridging Chlorine Atoms Enable the Construction of a Novel Benzimidazole-Derived Fluorescent Molecule
This research was supported by fund for the Key Laboratory of Catalysis and Energy Materials Chemistry of the Ministry of Education and the Hubei Key Laboratory of Catalysis and Materials Science (No. CHCL19002), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2021-KF-19).
Abstract
We have designed and prepared a novel benzimidazole-based fluorescent molecule through the construction of chlorine bridges. The structure of the molecule was authenticated by means of X-ray crystallography and its photophysical properties (absorption and fluorescence spectra) were investigated. Furthermore, the fluorescence emission of the molecule was rationalized through density functional theory calculations, which showed the influence of the bridging chlorine atoms on the energy levels and energy gap.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1790-2858.
- Supporting Information
- CIF File
Publication History
Received: 23 December 2021
Accepted after revision: 07 March 2022
Accepted Manuscript online:
07 March 2022
Article published online:
25 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Vasava MS, Bhoi MN, Rathwa SK, Jethava DJ, Acharya PT, Patel DB, Patel HD. Mini-Rev. Med. Chem. 2020; 20: 532
- 1b Law CS. W, Yeong KY. ChemMedChem 2021; 16: 1861
- 2 Pandey S, Bansal D, Gupta R. New J. Chem. 2018; 42: 9847
- 3a Song D, Ma S. ChemMedChem 2016; 11: 646
- 3b Küçükbay H, Uçkun M, Apohan E, Yeşilada Ö. Arch. Pharm. (Weinheim, Ger.) 2021; 354: e2100076
- 4a Hassan MM, Xu Y, Zareef M, Li H, Rong YO, Chen QO. Crit. Rev. Food Sci. Nutr. 2021; in press; DOI
- 4b Saluja P, Sharma H, Kaur N, Singh N, Jang DO. Tetrahedron 2012; 68: 2289
- 5a Wu Y.-C, You J.-Y, Guan L.-T, Shi J, Cao L, Wang Z.-Y. Youji Huaxue 2015; 35: 2465
- 5b Anbu S, Paul A, Surendranath K, Solaiman NS, Pombeiro AJ. L. Sens. Actuators, B 2021; 337: 129785
- 5c Li D, Zhong Z, Zheng G, Tian Z. Spectrochim. Acta, Part A 2017; 185: 173
- 6 Li X, Zhao S, Li B, Yang K, Lan M, Zeng L. Coord. Chem. Rev. 2021; 431: 213686
- 7a Tzeng B.-C, Chen B.-S, Chen C.-K, Chang Y.-P, Tzeng W.-C, Lin T.-Y, Lee G.-H, Chou P.-T, Fu Y.-J, Chang A.-H. Inorg. Chem. 2011; 50: 5379
- 7b Hu J.-H, Li J.-B, Qi J, Chen J.-J. New J. Chem. 2015; 39: 843
- 7c Yang Y, Li B, Zhang L, Guan Y. J. Lumin. 2014; 145: 895
- 7d Jung H.-J, Singh N, Jang DO. Tetrahedron Lett. 2008; 49: 2960
- 7e Saluja P, Kaur N, Singh N, Jang DO. Tetrahedron Lett. 2012; 53: 3292
- 7f Jiang X, Liu Z, Yang Y, Li H, Qi X, Ren W, Deng M, Lü M, Wu J, Liang S. Spectrochim. Acta, Part A 2020; 224: 117435
- 7g Zhao M, Deng Z, Tang J, Zhou X, Chen Z, Li X, Yang L, Ma L.-J. Analyst 2016; 141: 2308
- 8 Kim S, Kang DH, Ju H, Lee E, Jung JH, Lee SS, Choi KS, Park I.-H. Inorg. Chim. Acta 2018; 478: 44
- 9 Adams RD, Smith MD, Tedder JD, Wakdikar ND. J. Organomet. Chem. 2021; 941: 121799
- 10 Wu Y.-C, You J.-Y, Jiang K, Wu H.-Q, Xiong J.-F, Wang Z.-Y. Dyes Pigm. 2018; 149: 1
- 11 Zhao J.-H, Hu Y.-X, Lu H.-Y, Lü Y.-L, Li X. Org. Electron. 2017; 41: 56
- 12 Chaurasia S, Li C.-T, Desta MB, Ni J.-S, Lin JT. Chem. Asian J. 2017; 12: 996
- 13a Sang W, Gavi AJ, Yu B.-Y, Cheng H, Yuan Y, Wu Y, Lommens P, Chen C, Verpoort F. Chem. Asian J. 2020; 15: 129
- 13b Sang W, Gong Y.-Y, Cheng H, Zhang R, Yuan Y, Fan G.-G, Wang Z.-Q, Chen C, Verpoort F. Adv. Synth. Catal. 2021; 363: 1408
- 13c Fan G.-G, Jiang B.-W, Sang W, Cheng H, Zhang R, Yu B.-Y, Yuan Y, Chen C, Verpoort F. J. Org. Chem. 2021; 86: 14627
- 14 P1A 25 mL Schlenk flask equipped with a suitable stirrer bar was charged with 2-chlorobenzimidazole (1; 0.5 mmol) and n-hexylamine (2; 1.5 mmol), then capped with a rubber septum and subjected to three cycles of evacuation and backfilling with argon. The mixture was then heated at 120 ℃ for 16 h under argon. Finally, the product was directly purified by column chromatography [silica gel, CH2Cl2–MeOH (20:1)] to give a light-yellow solid; mp 134.5–135.4 ℃.1H NMR (500 MHz, CDCl3): δ = 12.06 (s, 1 H), 7.91 (s, 1 H), 7.43–7.28 (m, 2 H), 7.14–7.02 (m, 2 H), 3.57 (t, J = 6.7 Hz, 2 H), 1.67–1.57 (m, 2 H), 1.37–1.27 (m, 2 H), 1.18–1.09 (m, 4 H), 0.74 (t, J = 6.2 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 154.9, 135.6, 121.2, 111.6, 43.5, 31.3, 29.7, 26.4, 22.4, 13.8. HRMS (APCI): m/z [M – H]– calcd for C52H75Cl2N12: 937.56202; found: 216.15062, 252.12730, and 469.28520 (fragment peaks)
- 15 CCDC 2122025 contains the supplementary crystallographic data for compound P1. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 16 Cotton FA, Murillo CA, Pascual I. Inorg. Chem. Commun. 1999; 2: 101
- 17 Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
- 18 Hou Q.-F, Wu J.-J, Liang J.-M, Liu F.-H, He Y, Zhang Q.-R, Cheng H, Chen C, Peng D.-Y. Curr. Org. Chem. 2020; 24: 1517