Subscribe to RSS
DOI: 10.1055/a-1801-2595
Enantioselective Cobalt-Catalyzed C–H Functionalization
We thank the National Natural Science Foundation of China (21871145 and 22188101), Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (19JCZDJC37900), the Haihe Laboratory of Sustainable Chemical Transformations, and Frontiers Science Center for New Organic Matter (63181206) for financial support.
Abstract
Co-catalyzed C–H functionalization has received great attention due to the high earth abundance, low biotoxicity, and unique reactivity of cobalt; enantioselective control of these reactions has been a formidable challenge. Various efficient strategies have recently been developed for enantioselective Co-catalyzed C–H functionalization, but there is no topical review of this field. Herein, we give a detailed summary of this rapidly growing field, highlighting critical progress, current challenges, and future trends.
1 Introduction
2 Enantioselective C–H Functionalization via Low-Valent Co Catalysis
2.1 Chiral Diphosphines for Enantioselective Control
2.2 Chiral Monophosphines or N-Heterocyclic Carbenes for Enantioselective Control
3 Enantioselective C–H Functionalization via High-Valent Co Catalysis
3.1 Chiral Acids for Enantioselective Control
3.2 Chiral Cp Ligands for Enantioselective Control
4 Conclusions and Outlook
Key words
enantioselective - cobalt catalysis - C–H functionalization - chiral acid - chiral cyclopentadienyl ligandPublication History
Received: 17 February 2022
Accepted after revision: 17 March 2022
Accepted Manuscript online:
17 March 2022
Article published online:
12 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 1b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 1c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 1d Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 1e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
- 1f McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
-
1g
Yamaguchi J,
Yamaguchi AD,
Itami K.
Angew. Chem. Int. Ed. 2012; 51: 8960
- 1h Engle KM, Mei TS, Wasa M, Yu JQ. Acc. Chem. Res. 2012; 45: 788
- 1i Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 1j Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 1k Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 1l Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 1m Tao P, Jia Y. Sci. China Chem. 2016; 59: 1109
-
1n
Hartwig JF,
Larsen MA.
ACS Cent. Sci. 2016; 2: 281
- 1o Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1p Leitch JA, Frost CG. Chem. Soc. Rev. 2017; 46: 7145
- 1q Newton CG, Wang SG, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 1r Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 1s Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 1t Gandeepan P, Ackermann L. Chem 2018; 4: 199
- 1u Li JF, Luan YX, Ye M. Sci. China Chem. 2021; 64: 1923
- 2a Kulkarni AA, Daugulis O. Synthesis 2009; 4087
- 2b Nakao Y. Chem. Rec. 2011; 11: 242
- 2c Su B, Cao ZC, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 2d Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
- 2e Xu ZY, Yu HZ, Fu Y. Sci. China Chem. 2017; 60: 165
- 2f Pototschnig G, Maulide N, Schnuerch M. Chem. Eur. J. 2017; 23: 9206
- 2g Rajesh N, Barsu N, Sundararaju B. Tetrahedron Lett. 2018; 59: 862
- 2h Loup J, Dhawa U, Pesciaioli F, Wencel-Delord JW, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 2i Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 2j Wozniak L, Cramer N. Trends Chem. 2019; 1: 471
- 2k Bansal S, Shabade AB, Punji B. Adv. Synth. Catal. 2021; 363: 1998
- 2l Ilies L. Bull. Chem. Soc. Jpn. 2021; 94: 404
- 3 Murahashi S. J. Am. Chem. Soc. 1955; 77: 6403
- 4 Gao K, Lee PS, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2010; 132: 12249
- 5a Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
- 5b Ackermann L. J. Org. Chem. 2014; 79: 8948
- 5c Yoshikai N. Bull. Chem. Soc. Jpn. 2014; 87: 843
- 5d Yoshikai N. ChemCatChem 2015; 7: 732
- 5e Wei D, Zhu X, Niu JL, Song MP. ChemCatChem 2016; 8: 1242
- 5f Usman M, Ren ZH, Wang YY, Guan ZH. Synthesis 2017; 49: 1419
- 5g Wang S, Chen SY, Yu XQ. Chem. Commun. 2017; 53: 3165
- 5h Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
- 5i Kommagalla Y, Chatani N. Coord. Chem. Rev. 2017; 350: 117
- 5j Yoshino T, Matsunaga S. Adv. Organomet. Chem. 2017; 68: 197
- 5k Chirila PG, Whiteoak CJ. Dalton Trans. 2017; 46: 9721
- 5l Ujwaldev SM, Harry NA, Divakar MA, Anilkumar G. Catal. Sci. Technol. 2018; 8: 5983
- 5m Yoshino T, Matsunaga S. Asian J. Org. Chem. 2018; 7: 1193
- 5n Mei RH, Dhawa U, Samatan RC, Ma W, Wencel-Delord J, Ackermann L. ChemSusChem 2020; 13: 3306
- 5o Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Chem. Soc. Rev. 2020; 49: 5310
- 5p Fernández DF, Mascareñas JL, López F. Chem. Soc. Rev. 2020; 49: 7378
- 5q Lukasevicsa L, Grigorjeva L. Org. Biomol. Chem. 2020; 18: 7460
- 5r Banjare SK, Nanda T, Pati BV, Biswal P, Ravikumar PC. Chem. Commun. 2021; 57: 3630
- 5s Sunny S, Karvembua R. Adv. Synth. Catal. 2021; 363: 4309
- 5t Hamilton A, Whiteoak C. J. Organomet. Chem. 2021; 43: 186
- 5u Cizikovs A, Lukasevics L, Grigorjeva L. Tetrahedron 2021; 93: 132307
- 5v Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
- 6a Yoshino T, Matsunaga S. Synlett 2019; 30: 1384
- 6b Mishra AA, Subhedar D, Bhanage BM. Chem. Rec. 2019; 19: 1829
- 6c Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
- 6d Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
- 6e Lukasevics L, Cizikovsa A, Grigorjeva L. Chem. Commun. 2021; 57: 10827
- 6f Davison RT, Kuker EL, Dong VM. Acc. Chem. Res. 2021; 54: 1236
- 7a Sauermann N, Meyer TH, Ackermann L. Chem. Eur. J. 2018; 24: 16209
- 7b Kojima M, Matsunaga S. Trends Chem. 2020; 2: 410
- 7c Zhong J, Yu Y, Zhang D, Ye K. Chin. Chem. Lett. 2021; 32: 963
- 7d Chakraborty P, Mandal R, Paira S, Sundararaju B. Chem. Commun. 2021; 57: 13075
- 8a Xie J.-J, Xu P, Zhu Y.-L, Wang J.-Y, Lee W.-CC, Zhang XP. J. Am. Chem. Soc. 2021; 143: 11670
- 8b Lang K, Li C.-Q, Kim I, Zhang XP. J. Am. Chem. Soc. 2020; 142: 20902
- 8c Jin L.-M, Xu P, Xie J.-J, Zhang XP. J. Am. Chem. Soc. 2020; 142: 20828
- 8d Hu Y, Lang K, Li C.-Q, Gill JB, Kim I, Lu H.-J, Fields KB, Marshall MK, Cheng Q.-G, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 18160
- 9a Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 9b Planas O, Chirila PG, Whiteoak CJ, Ribas X. Adv. Organomet. Chem. 2018; 69: 209
- 10a Kundu K, McCullagh JV, Morehead AT. J. Am. Chem. Soc. 2005; 127: 16042
- 10b Phan DH. T, Kim B, Dong VM. J. Am. Chem. Soc. 2009; 131: 15608
- 10c Phan DH, Kou KG. M, Dong VM. J. Am. Chem. Soc. 2010; 132: 16354
- 10d Sharma RK, RajanBabu TV. J. Am. Chem. Soc. 2010; 132: 3295
- 10e Wei CH, Mannathan S, Cheng CH. J. Am. Chem. Soc. 2011; 133: 6942
- 10f Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936
- 10g Wei CH, Mannathan S, Cheng CH. Angew. Chem. Int. Ed. 2012; 51: 10592
- 10h Gandeepan P, Cheng CH. Acc. Chem. Res. 2015; 48: 1194
- 11 Yang J, Yoshikai N. J. Am. Chem. Soc. 2014; 136: 16748
- 12a Yang J, Rerat A, Lim YJ, Gosmini C, Yoshikai N. Angew. Chem. Int. Ed. 2017; 56: 2449
- 12b James BR, Young CG. J. Chem. Soc., Chem. Commun. 1983; 1215
- 12c James BR, Young CG. J. Organomet. Chem. 1985; 285: 321
- 12d Wu X, Funakoshi K, Sakai K. Tetrahedron Lett. 1992; 33: 6331
- 12e Barnhart RW, Wang XQ, Noheda P, Bergens SH, Whelan J, Bosnich B. J. Am. Chem. Soc. 1994; 116: 1821
- 12f Barnhart RW, McMorran DA, Bosnich B. Chem. Commun. 1997; 589
- 12g Tanaka M, Sakai K, Suemune H. Curr. Org. Chem. 2003; 7: 353
- 12h Hoffman TJ, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 10670
- 13a Kim DK, Riedel J, Kim RS, Dong VM. J. Am. Chem. Soc. 2017; 139: 10208
- 13b Yip SY. Y, Aïssa C. Angew. Chem. Int. Ed. 2015; 54: 6870
- 13c Tanaka K, Fu GC. J. Am. Chem. Soc. 2003; 125: 8078
- 14a Whyte A, Bajohr J, Torelli A, Lautens M. Angew. Chem. Int. Ed. 2020; 59: 16409
- 14b Whyte A, Torelli A, Mirabi B, Prieto L, Rodríguez JE, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
- 14c Santhoshkumar R, Mannathan S, Cheng CH. J. Am. Chem. Soc. 2015; 137: 16116
- 15 Lee PS, Yoshikai N. Org. Lett. 2015; 17: 22
- 16 Jacob N, Zaid Y, Oliveira JC. A, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
- 17a Nguyen QH, Guo SM, Royal T, Baudoin O, Cramer N. J. Am. Chem. Soc. 2020; 142: 2161
- 17b Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 18532
- 18 Zell D, Bursch M, Mgller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
- 19 Pesciaioli F, Dhawa U, Oliveira JC. A, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
- 20a Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 20b Dastbaravardeh N, Christakakou M, Haider M, Schnerch M. Synthesis 2014; 46: 1421
-
20c
He J,
Wasa M,
Chan KS. L,
Shao Q,
Yu JQ.
Chem. Rev. 2017; 117: 8754
- 20d Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 20e Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
- 20f Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
- 21 Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
- 22 Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
- 23 Kurihara T, Kojima M, Yoshino T, Matsunaga S. Asian J. Org. Chem. 2020; 9: 368
- 24 Zhang Z, Han S, Tang M, Ackermann L, Li J. Org. Lett. 2017; 19: 3315
- 25 Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
- 26 Liu YH, Li PX, Yao QJ, Zhang ZZ, Huang DY, Le MD, Song H, Liu L, Shi BF. Org. Lett. 2019; 21: 1895
- 27 Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. J. Am. Chem. Soc. 2021; 143: 19112
- 28 Yuan WK, Shi BF. Angew. Chem. Int. Ed. 2021; 60: 23187
- 29 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
- 30a Hyster TK, Knorr L, Ward TR, Rovis T. Science 2012; 338: 500
- 30b Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 30c Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
- 30d Zheng J, Cui WJ, Zheng C, You SL. J. Am. Chem. Soc. 2016; 138: 5242
- 30e Jia ZJ, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
- 30f Smits G, Audic B, Wodrich MD, Corminboeuf C, Cramer N. Chem. Sci. 2017; 8: 7174
- 30g Sun Y, Cramer N. Chem. Sci. 2018; 9: 2981
- 30h Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
- 30i Wang SG, Park SH, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 5459
- 31 Ozols K, Jang YS, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
- 32 Ozols K, Onodera S, Woźniak Ł, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 655
- 33 Herraiz AG, Cramer N. ACS Catal. 2021; 11: 11938
- 34 Boerth JA, Hummel JR, Ellman JA. Angew. Chem. Int. Ed. 2016; 55: 12650
For selected reviews on transition-metal-catalyzed C–H functionalization, see:
For selected reviews on 3d-transition-metal-catalyzed C–H functionalization, see:
For selected reviews on Co-catalyzed C–H functionalization, see:
For reviews that summarize enantioselective Co-catalyzed C–H functionalization into subsections, see:
For selected reviews on Co-involved photo- or electrocatalysis, see:
For recent progress from Zhang group, see:
For selected examples on diphosphine-enabled enantioselective Co-catalyzed transformation of π-unsaturated compounds, see:
For relevant examples on asymmetric Rh-catalyzed versions, see:
For Rh-catalyzed formation of four-membered cyclobutanones, see:
For Rh-catalyzed version, see:
For selected reviews on C(sp3)–H activation, see: