Subscribe to RSS
DOI: 10.1055/a-1811-7171
Zur klinisch-pathologischen Korrelation der mikrobiellen Keratitis und darüber hinaus: Gibt es eine korneale Sepsis?
Article in several languages: deutsch | English
Zusammenfassung
Mikrobielle, infektiöse, Keratitiden bedingen relevant die Indikation von perforierenden Keratoplastiken. Durch eine akute transplantationsbedürftige Situation ergibt sich eine histopathologische Untersuchung der gesamten Korneadicke. Wenn auch die klinische Diagnose einer infektiösen Keratitis dabei nicht immer zu belegen ist, kann in der Pathologie sehr zur diagnostischen Klärung des klinischen Befundes und der Pathogenese beigetragen werden. Dies gelingt mit dem Einsatz vielfältiger Methoden aus Zytologie, Histochemie, Immunhistologie, Molekularpathologie und selten eingesetzter Elektronenmikroskopie, wodurch es möglich ist, geweblich manifestierte Vor- und Begleiterkrankungen nachzuweisen und die infrage kommenden Erreger anzugeben. Lässt sich eine klinisch-pathologische Korrelation für die Korneaschädigung nicht zufriedenstellend erbringen, stellt sich die Frage, ob ein mutmaßlicher Erreger final gar nicht dafür verantwortlich gewesen ist. Die Pathogenese einer transplantationsbedürftigen Keratitis ist auch experimentell am Menschen bisher nicht vollständig entschlüsselt. Die Entwicklung einer derartigen Keratitis kann zu einer klinischen Symptomatik führen, die auch als „bedrohliche Organdysfunktion“ beschrieben wird, ein Begriff aus der Sepsisforschung. Unter Berücksichtigung aktueller Literatur werden mögliche Übereinstimmungen zwischen Sepsis und mikrobieller Keratitis und ihr Bezug zur Histopathologie diskutiert.
Publication History
Received: 04 January 2022
Accepted: 18 March 2022
Article published online:
20 July 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Wang J, Hasenfus A, Schirra F. et al. Changing indications for penetrating keratoplasty in Homburg/Saar from 2001 to 2010–histopathology of 1,200 corneal buttons. Graefes Arch Clin Exp Ophthalmol 2013; 251: 797-802
- 2 Pluzsik MT, Tóth G, Tóth J. et al. Changing trends in penetrating keratoplasty indications at a tertiary eye care center in Budapest, Hungary between 2006 and 2017. Int J Ophthalmol 2020; 13: 1814-1819
- 3 Gao H, Huang T, Pan Z. et al. Survey report on keratoplasty in China: A 5-year review from 2014 to 2018. PLoS One 2020; 15: e0239939
- 4 Godeiro KD, Coutinho AB, Pereira PR. et al. Histopathological diagnosis of corneal button specimens: an epidemiological study. Ophthalmic Epidemiol 2007; 14: 70-75
- 5 Lin IH, Chang YS, Tseng SH. et al. A comparative, retrospective, observational study of the clinical and microbiological profiles of post-penetrating keratoplasty keratitis. Sci Rep 2016; 6: 32751
- 6 Soleimani M, Tabatabaei SA, Masoumi A. et al. Infectious keratitis: trends in microbiological and antibiotic sensitivity patterns. Eye (Lond) 2021; 35: 3110-3115
- 7 Rohilla R, Meena S, Mohanty A. et al. Etiological spectrum of infectious keratitis in the era of MALDI-TOF-MS at a tertiary care hospital. J Family Med Prim Care 2020; 9: 4576-4581
- 8 Cunha AM, Loja JT, Torrão L. et al. A 10-Year Retrospective Clinical Analysis of Fungal Keratitis in a Portuguese Tertiary Centre. Clin Ophthalmol 2020; 14: 3833-3839
- 9 Das S, Sharma S, Priyadarshini O. et al. Association between culture results of corneal scrapings and culture and histopathology results of corneal tissues in therapeutic keratoplasty. Cornea 2011; 30: 1003-1006
- 10 Younger JR, Johnson RD, Holland GN. et al. Microbiologic and histopathologic assessment of corneal biopsies in the evaluation of microbial keratitis. Am J Ophthalmol 2012; 154: 512-519
- 11 Vemuganti GK, Murthy SI, Das S. Update on pathologic diagnosis of corneal infections and inflammations. Middle East Afr J Ophthalmol 2011; 18: 277-284
- 12 Roberts F, Thum CK. Corneal Ulceration. In: Roberts F, Thum CK. eds. Leeʼs ophthalmic Histopathology. 4th ed. London, Heidelberg, New York: Springer; 2021: 441-442
- 13 Gupta N, Tandon R. Investigative modalities in infectious keratitis. Indian J Ophthalmol 2008; 56: 209-213
- 14 Kradin RL, Deshpande V, Iafrate AJ. General Principles in the Diagnosis of Infection. In: Kradin RL. ed. Diagnostic Pathology of infectious Disease. 2nd ed.. Philadelphia, USA: Elsevier; 2018: 6-11
- 15 Tsutsumi Y. Electron Microscopic Study Using Formalin-fixed, Paraffin-embedded Material, with Special Reference to Observation of Microbial Organisms and Endocrine Granules. Acta Histochem Cytochem 2018; 51: 63-71
- 16 Mukherjee S, Zhou X, Rajaiya J. et al. Ultrastructure of adenovirus keratitis. Invest Ophthalmol Vis Sci 2015; 56: 472-477
- 17 Curry A. Microbial Ultrastructure. In: Stirling JW, Curry A, Eyden B. eds. Diagnostic Electron Microscopy: A practical Guide to Interpretation and Technique. Chichester, West Sussex, UK: John Wiley & Sons Ltd.; 2013: 181-219
- 18 Ebrahimi KB, Green WR, Grebe R. et al. Acanthamoeba sclerokeratitis. Graefes Arch Clin Exp Ophthalmol 2009; 247: 283-286
- 19 Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008; 27: 22-27
- 20 Meyer JJ, McGhee CN. Acute Corneal Hydrops Complicated by Microbial Keratitis: Case Series Reveals Poor Immediate and Long-Term Prognosis. Cornea 2016; 35: 1019-1022
- 21 Seitz B, Resch MD, Schlötzer-Schrehardt U. et al. Histopathology and ultrastructure of human corneas after amniotic membrane transplantation. Arch Ophthalmol 2006; 124: 1487-1490
- 22 Kangas TA, Edelhauser HF, Twining SS. et al. Loss of stromal glycosaminoglycans during corneal edema. Invest Ophthalmol Vis Sci 1990; 31: 1994-2002
- 23 Prokosch V, Gatzioufas Z, Thanos S. et al. Microbiological findings and predisposing risk factors in corneal ulcers. Graefes Arch Clin Exp Ophthalmol 2012; 250: 369-374
- 24 Basti S, Schmidt C. Vitamin A deficiency. Cornea 2008; 27: 973 author reply 973
- 25 Cooney TM, Johnson CS, Elner VM. Keratomalacia caused by psychiatric-induced dietary restrictions. Cornea 2007; 26: 995-997
- 26 Kang Y, Zhang H, Hu M. et al. Alterations in the Ocular Surface Microbiome in Traumatic Corneal Ulcer Patients. Invest Ophthalmol Vis Sci 2020; 61: 35
- 27 Hua X, Yuan X, Wilhelmus KR. A fungal pH-responsive signaling pathway regulating Aspergillus adaptation and invasion into the cornea. Invest Ophthalmol Vis Sci 2010; 51: 1517-1523
- 28 Vallas V, Stapleton F, Willcox MD. Bacterial invasion of corneal epithelial cells. Aust N Z J Ophthalmol 1999; 27: 228-230
- 29 Taylor PB, Tabbara KF. Peripheral corneal infections. Int Ophthalmol Clin 1986; 26: 29-48
- 30 Zaidi TS, Zaidi T, Pier GB. et al. Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun 2012; 80: 3706-3712
- 31 Gadjeva M, Nagashima J, Zaidi T. et al. Inhibition of macrophage migration inhibitory factor ameliorates ocular Pseudomonas aeruginosa-induced keratitis. PLoS Pathog 2010; 6: e1000826
- 32 Jinno A, Park PW. Role of glycosaminoglycans in infectious disease. Methods Mol Biol 2015; 1229: 567-585
- 33 Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110: 1-9
- 34 Jinno A, Hayashida A, Jenkinson HF. et al. Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. mBio 2020; 11: e01907-e01920
- 35 Jackson BE, Wilhelmus KR, Hube B. The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest Ophthalmol Vis Sci 2007; 48: 3559-3565
- 36 Matsumoto K. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem 2004; 385: 1007-1016
- 37 Vemuganti GK, Reddy K, Iftekhar G. et al. Keratocyte loss in corneal infection through apoptosis: a histologic study of 59 cases. BMC Ophthalmol 2004; 4: 16
- 38 Garreis F, Gottschalt M, Paulsen FP. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev Ophthalmol 2010; 45: 16-22
- 39 Alfaar AS, Saad AM, KhalafAllah MT. et al. Second primary malignancies of eye and ocular adnexa after a first primary elsewhere in the body. Graefes Arch Clin Exp Ophthalmol 2021; 259: 515-526
- 40 Kiratli H, Aygün FB, Gedikoğlu G. Corneal Relapse of Peripheral T-Cell Lymphoma Under Systemic Chemotherapy. Cornea 2018; 37: 1593-1595
- 41 Urwin L, Okurowska K, Crowther G. et al. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9: 2450
- 42 Wilson SE. Coordinated Modulation of Corneal Scarring by the Epithelial Basement Membrane and Descemetʼs Basement Membrane. J Refract Surg 2019; 35: 506-516
- 43 Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol 2019; 63: 15-22
- 44 Müller RT, Abedi F, Cruzat A. et al. Degeneration and Regeneration of Subbasal Corneal Nerves after Infectious Keratitis: A Longitudinal In Vivo Confocal Microscopy Study. Ophthalmology 2015; 122: 2200-2209
- 45 Shtein RM, Garcia DD, Musch DC. et al. Herpes simplex virus keratitis: histopathologic inflammation and corneal allograft rejection. Ophthalmology 2009; 116: 1301-1305
- 46 Schrecker J, Seitz B, Berger T. et al. Malignant Keratitis Caused by a Highly-Resistant Strain of Fusarium Tonkinense from the Fusarium Solani Complex. J Fungi (Basel) 2021; 7: 1093
- 47 Lübke J, Auw-Hädrich C, Meyer-Ter-Vehn T. et al. Fusarienkeratitis mit dramatischem Ausgang. Ophthalmologe 2017; 114: 462-465
- 48 Reynolds MM, Greenwood-Quaintance KE, Patel R. et al. Selected Antimicrobial Activity of Topical Ophthalmic Anesthetics. Transl Vis Sci Technol 2016; 5: 2
- 49 Neidhart B, Kowalska M, Valentin JDP. et al. Tissue Inhibitor of Metalloproteinase (TIMP) Peptidomimetic as an Adjunctive Therapy for Infectious Keratitis. Biomacromolecules 2021; 22: 629-639
- 50 Sharma SL. Keratomycosis in corneal sepsis. Indian J Ophthalmol 1981; 29: 443-445
- 51 Watson PG, Gairdner D. TRIC agent as a cause of neonatal eye sepsis. Br Med J 1968; 3: 527-528
- 52 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810
- 53 Ghnewa YG, Fish M, Jennings A. et al. Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction. Med Klin Intensivmed Notfmed 2020; 115 (Suppl. 01) S10-S14
- 54 van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54: 2450-2464
- 55 Ding R, Meng Y, Ma X. The Central Role of the Inflammatory Response in Understanding the Heterogeneity of Sepsis-3. Biomed Res Int 2018; 2018: 5086516
- 56 Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity 2014; 40: 463-475
- 57 Ehler J, Busjahn C, Schürholz T. Welche Biomarker zu Diagnosestellung und Steuerung der antiinfektiven Therapie bei Sepsis?. Anaesthesist 2022; 71: 3-11
- 58 Ceydeli A, Condon MR, Siegel JH. The septic abscess wall: a cytokine-generating organ associated with portal venous cytokinemia, hepatic outflow fibrosis, sinusoidal congestion, inflammatory cell sequestration, hepatocellular lipid deposition, and focal cell death. Shock 2003; 20: 74-84
- 59 Lerolle N, Nochy D, Guérot E. et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 2010; 36: 471-478
- 60 Kosaka J, Lankadeva YR, May CN. et al. Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med 2016; 44: e897-903
- 61 Garofalo AM, Lorente-Ros M, Goncalvez G. et al. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp 2019; 7 (Suppl. 01) S45
- 62 Vasiliauskaitė I, de Jong M, Quilendrino R. et al. Use of Corneas From Septic Donors for Descemet Membrane Endothelial Keratoplasty. Cornea 2021; 40: 33-38
- 63 Singh T, Arya SK, Handa U. et al. Usability of donor corneas harvested from the deceased having septicaemia or malignancy. QJM 2019; 112: 681-683
- 64 Hortová-Kohoutková M, Lázničková P, Bendíčková K. et al. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. J Cell Mol Med 2020; 24: 12504-12512
- 65 Stepp MA, Menko AS. Immune responses to injury and their links to eye disease. Transl Res 2021; 236: 52-71
- 66 Song J, Huang YF, Zhang WJ. et al. Ocular diseases: immunological and molecular mechanisms. Int J Ophthalmol 2016; 9: 780-788
- 67 Guo H, Gao J, Wu X. Toll-like receptor 2 siRNA suppresses corneal inflammation and attenuates Aspergillus fumigatus keratitis in rats. Immunol Cell Biol 2012; 90: 352-357
- 68 Epstein SP, Chen D, Asbell PA. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther 2009; 25: 415-424
- 69 Rodrigues MM, Robey PG. C-reactive protein in human lattice corneal dystrophy. Curr Eye Res 1982 – 1983; 2: 721-724
- 70 Yang RB, Wu LP, Lu XX. et al. Immunologic mechanism of fungal keratitis. Int J Ophthalmol 2021; 14: 1100-1106
- 71 Sakimoto T, Sawa M. Metalloproteinases in corneal diseases: degradation and processing. Cornea 2012; 31 (Suppl. 01) S50-S56
- 72 Guzmán M, Miglio MS, Zgajnar NR. et al. The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P. Mucosal Immunol 2018; 11: 1441-1453
- 73 Cruzat A, Schrems WA, Schrems-Hoesl LM. et al. Contralateral Clinically Unaffected Eyes of Patients With Unilateral Infectious Keratitis Demonstrate a Sympathetic Immune Response. Invest Ophthalmol Vis Sci 2015; 56: 6612-6620