Synthesis 2022; 54(17): 3753-3760
DOI: 10.1055/a-1811-8679
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Developments in the Alkynyltrifluoromethylations of Alkenes and Alkynes

Attila M. Remete
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary
,
Melinda Nonn
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary
b   MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary
,
Balázs Volk
c   Directorate of Drug Substance Development, Egis Pharmaceuticals PLC, P.O. Box 100, 1475 Budapest, Hungary
,
Loránd Kiss
d   Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Magyar Tudósok krt. 2, Hungary
› Author Affiliations
We are grateful to the Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (Hungarian Research Foundation; NKFIH FK 134586) for financial support.


Abstract

As a consequence of the expanding relevance of fluorine-containing organic molecules in drug research, the synthesis of organofluorine scaffolds has high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon–carbon multiple bonds, with the simultaneous introduction of a CF3 group and another function, have considerable potential. Considering the high importance of carbon–carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, alkynyltrifluoromethylations have increasing interest in synthetic chemistry. Alkynyltrifluoromethylation is a narrow area and a relatively new approach in synthetic chemistry­; however it has not been reviewed so far. Our goal in this short review is to summarize recent developments in alkynyltrifluoromethylation reactions by considering: (a) alkynyltrifluoromethylation reactions of alkenes, including reactions involving either intramolecular alkynyl migration or intermolecular transformation, and (b) alkynyltrifluoromethylation reactions of alkynes.

1 Introduction

2 Alkynyltrifluoromethylation Reactions of Alkenes

2.1 Reactions Involving Intramolecular Alkynyl Migration

2.2 Intermolecular Reactions

3 Alkynyltrifluoromethylation Reactions of Alkynes

4 Summary and Outlook



Publication History

Received: 10 March 2022

Accepted after revision: 30 March 2022

Accepted Manuscript online:
30 March 2022

Article published online:
12 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
  • 2 Yamazaki T, Taguchi T, Ojima I. In Fluorine in Medicinal Chemistry and Chemical Biology . Ojima I. Wiley-Blackwell; Chichester: 2009: 3-46
  • 3 Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
  • 4 Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA. J. Fluorine Chem. 2014; 167: 37
  • 5 Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 6a Braun M, Eicher J. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 7-25
    • 6b Ignat’ev NV. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 71-123
    • 6c Langlois BR. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 125-140
    • 6d Toulgoat F, Billard T. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 141-179
    • 6e Dilman AD. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 181-199
    • 6f Qing F.-L, Xu X.-H. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 201-222
    • 6g Thornbury R, Schäfer G, Toste FD. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 223-263
    • 6h Umemoto T. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 265-287
    • 6i Prakash GK. S, Zhang Z. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 289-337
  • 7 Fustero S, Sedgwick DM, Román R, Barrio P. Chem. Commun. 2018; 54: 9706
  • 8 Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
  • 9 Dykstra KD, Ichiishi N, Krska SW, Richardson PF. In Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals . Haufe G, Leroux FG. Academic Press; London: 2019: 1-90
    • 10a Egami H, Shimizu R, Usui Y, Sodeoka M. J. Fluorine Chem. 2014; 167: 172
    • 10b Egami H, Shimizu R, Sodeoka M. Tetrahedron Lett. 2012; 53: 5503
    • 10c Zhu L, Ye J.-H, Duan M, Qi X, Yu D.-G, Bai R, Lan Y. Org. Chem. Front. 2018; 5: 633
    • 10d Xiao H, Shen H, Zhu L, Li C. J. Am. Chem. Soc. 2019; 141: 11440
    • 10e Shen K, Wang Q. Org. Chem. Front. 2016; 3: 222
    • 10f Kawamura S, Egami H, Sodeoka M. J. Am. Chem. Soc. 2015; 137: 4865
  • 12 Alonso C, de Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 13 Keerthika K, Nath S, Geetharani K. Catal. Sci. Technol. 2020; 10: 7142
  • 14 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
  • 15 Michel D. Chimia 2004; 58: 100
  • 16 Gong J, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4486
  • 17 Xu Y, Wu Z, Jiang J, Ke Z, Zhu C. Angew. Chem. Int. Ed. 2017; 56: 4545
  • 18 Zou Z, Zhang W, Wang Y, Kong L, Karotsis G, Wang Y, Pan Y. Org. Lett. 2019; 21: 1857
  • 19 Tang X, Studer A. Chem. Sci. 2017; 8: 6888
  • 20 Li M, Zhu X.-Y, Qiu Y.-F, Han Y.-P, Xia Y, Wang C.-T, Li X.-S, Wei W.-X, Liang Y.-M. Adv. Synth. Catal. 2019; 361: 2945
  • 21 Jiang H, He Y, Cheng Y, Yu S. Org. Lett. 2017; 19: 1240
  • 22 Zhou S, Song T, Chen H, Liu Z, Shen H, Li C. Org. Lett. 2017; 19: 698
  • 23 Guo Y.-Q, Wang K, Wang R, Song H, Liu Y, Wang Q. Adv. Synth. Catal. 2021; 363: 1651
  • 24 Yang X, Tsui GC. Org. Lett. 2019; 21: 8625
  • 25 Fu L, Zhou S, Wan X, Chen P, Liu G. J. Am. Chem. Soc. 2018; 140: 10965
  • 26 Dong X.-Y, Cheng J.-T, Zhang Y.-F, Li Z.-L, Zhan T.-Y, Chen J.-J, Wang F.-L, Yang N.-Y, Ye L, Gu Q.-S, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 9501
  • 27 Yang Y, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2021; 60: 2145
  • 28 Yu J, Wang D, Xu Y, Wu Z, Zhu C. Adv. Synth. Catal. 2018; 360: 744
  • 29 Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Org. Lett. 2020; 22: 1490
  • 30 Fu B, Escorihuela J, Han J, Fustero S, Barrio P, Sodeoka M, Kawamura S, Sorochinsky A, Soloshonok VA. Molecules 2021; 26: 7221