Subscribe to RSS
DOI: 10.1055/a-1826-2852
Aryl Methyl Ketones: Versatile Synthons in the Synthesis of Heterocyclic Compounds
Abstract
The synthesis of aromatic heterocycles has attracted substantial attention due to the abundance of these heterocycles in drug molecules, natural products, and other compounds of biological interest. Accordingly, there is a demand for straightforward synthetic protocols toward such compounds using readily available starting materials. In the past decade, there have been substantial developments in heterocycle synthesis, especially in metal-catalyzed and iodine-assisted approaches. This graphical review focuses on notable reactions from the past decade using aryl and heteroaryl methyl ketones as starting materials, including representative reaction mechanisms.
#
Key words
aromatic heterocycles - iodine - ketones - metal-free - fused bicycles - fused tricycles - fused polyheterocyclesAromatic heterocycles are highly privileged structures in drug discovery and development. Such fragments are found very frequently in biologically active compounds and thus are common building blocks for drugs and natural product derivatives. Beyond their utility in eliciting biological activity, these heterocycles are also useful in modifying ADME (absorption, distribution, metabolism and excretion)/pharmacokinetic properties (introducing lipophilicity or hydrophilicity, improving solubility, fine-tuning hydrogen bonding, etc.) and reducing possible toxicity concerns. The increasing presence of various aromatic heterocycles in drugs is no doubt related to advances in synthetic methodology such as metal-catalyzed cross-couplings,[1a] hetero-couplings,[1b] and metal-free conditions,[1c] [d] enabling rapid access to a wide variety of functionalized heterocyclic scaffolds.
Aryl methyl ketones (AMKs) (also including heteroaryl compounds) are attractive precursors that allow for the facile synthesis of aromatic heterocycles. Iodine, in combination with AMKs, can substitute for several transition metals used in previously reported transformations while also maintaining an excellent atom economy.[1e] [f] [j] This aspect, along with the commercial abundance and cost-effective nature of AMKs, provides an incentive to the research community to discover and further develop such processes for use in drug discovery. Despite the vast literature that has evolved on this topic, there has yet to be a succinct review of the important developments in this area. The present graphical review provides a comprehensive compilation (focused on 2012–2021) of synthetic approaches for 5- and 6-membered, as well as fused and poly-fused heterocycles. Herein, we detail the role of AMKs in the synthesis of such heterocycles. Brief examples of practical syntheses of AMKs are presented in Scheme 1. The application of AMKs to the synthesis of heterocycles follows in Schemes 2 through 111, with an overall organization focused on heterocycle type. Brief reaction mechanisms are highlighted in instructive examples, with colors to aid understanding. Yields and structural diversity are reported in numerous examples to reflect the substrate scope for these reactions, including the use of electron-donating and -withdrawing groups as well as heterocyclic starting materials.
#
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
We are grateful to Dr. Lee McDermott, University of Pittsburgh, and current members of Dr. Mark Mitton-Fry’s research group who have contributed to the development of this field.
-
References
- 1a Buskes MJ, Blanco MJ. Molecules 2020; 25: 3493
- 1b Zhang TY. The Evolving Landscape of Heterocycles in Drugs and Drug Candidates . In Advances in Heterocyclic Chemistry, Vol. 121. Scriven EF. V, Ramsden CA. Academic Press; Cambridge: 2017. Chap. 1, 1
- 1c Khan I, Zaib S, Ibrar A. Org. Chem. Front. 2020; 7: 3734
- 1d Lasso JD, Castillo-Pazos DJ, Li CJ. Chem. Soc. Rev. 2021; 50: 10955
- 1e Yasui O, Ishihara K. Science 2010; 328: 1376
- 1f Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
- 1g Renault O, Dallemagne P, Rault S. Org. Prep. Proced. Int. 1999; 31: 324
- 1h Garrido F, Raeppel S, Mann A, Lautens M. Tetrahedron Lett. 2001; 42: 265
- 1i Ramgren SD, Garg NK. Org. Lett. 2014; 16: 824
- 1j Rajai-Daryasarei S, Gohari MH, Mohammadi N. New J. Chem. 2021; 45: 20486
- 2a Das P, Ray S, Mukhopadhyay C. Org. Lett. 2013; 15: 5622
- 2b Wu X, Zhao P, Geng X, Wang C, Wu Y.-d, Wu A.-x. Org. Lett. 2018; 20: 688
- 2c Xu H, Wang F.-J, Xin M, Zhang Z. Eur. J. Org. Chem. 2016; 925
- 2d Wu J, Chen X, Xie Y, Guo Y, Zhang Q, Deng G.-J. J. Org. Chem. 2017; 82: 5743
- 2e Ghosh M, Mishra S, Hajra A. J. Org. Chem. 2015; 80: 5364
- 2f Manna S, Antonchick AP. Org. Lett. 2015; 17: 4300
- 2g Wang M, Xiang J.-C, Cheng Y, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 524
- 2h Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2012; 14: 6068
- 2i Liu C.-K, Yang Z, Zeng Y, Guo K, Fang Z, Li B. Org. Chem. Front. 2017; 4: 1508
- 2j Zhang J, Gao Q, Wu X, Geng X, Wu Y.-D, Wu A. Org. Lett. 2016; 18: 1686
- 2k de Toledo I, Grigolo TA, Bennett JM, Elkins JM, Pilli RA. J. Org. Chem. 2019; 84: 14187
- 2l Geng X, Wang C, Huang C, Bao Y, Zhao P, Zhou Y, Wu Y.-D, Feng L.-l, Wu A.-X. Org. Lett. 2020; 22: 140
- 2m Aegurla B, Peddinti RK. Org. Biomol. Chem. 2017; 15: 9643
- 2n Whitt J, Duke C, Ali MA, Chambers SA, Khan MM. K, Gilmore D, Alam MA. ACS Omega 2019; 4: 14284
- 2o Fang Z, Yin H, Lin L, Wen S, Xie L, Huang Y, Weng Z. J. Org. Chem. 2020; 85: 8714
- 2p Gao Q, Liu S, Wu X, Zhang J, Wu A. Org. Lett. 2015; 17: 2960
- 2q Wu X, Geng X, Zhao P, Zhang J, Wu Y.-d, Wu A.-x. Chem. Commun. 2017; 53: 3438
- 2r Xue W.-J, Li Q, Zhu Y.-P, Wang J.-G, Wu A.-X. Chem. Commun. 2012; 48: 3485
- 2s Dai P, Tan X, Luo Q, Yu X, Zhang S, Liu F, Zhang W.-H. Org. Lett. 2019; 21: 5096
- 2t Gu J, Fang Z, Yang Z, Li X, Zhu N, Wan L, Wei P, Guo K. RSC Adv. 2016; 6: 89073
- 2u Verbelen B, Dehaen W. Org. Lett. 2016; 18: 6412
- 2v Liu Y, Nie G, Zhou Z, Jia L, Chen Y. J. Org. Chem. 2017; 82: 9198
- 2w Bonache MA, Moreno-Fernández S, Miguel M, Sabater-Muñoz B, González-Muñiz R. ACS Comb. Sci. 2018; 20: 694
- 2x Gao M, Yang Y, Wu Y.-D, Deng C, Shu W.-M, Zhang D.-X, Cao L.-P, She N.-F, Wu A.-X. Org. Lett. 2010; 12: 4026
- 2y Sribalan R, Sangili A, Banuppriya G, Padmini V. New J. Chem. 2017; 41: 3414
- 2z Sadeghi M, Safari J, Zarnegar Z. RSC Adv. 2016; 6: 64749
- 3a Yin G, Liu Q, Ma J, She N. Green Chem. 2012; 14: 1796
- 3b Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Org. Biomol. Chem. 2021; 19: 2703
- 3c Huang H, Ji X, Wu W, Huang L, Jiang H. J. Org. Chem. 2013; 78: 3774
- 3d Xi L.-Y, Zhang R.-Y, Liang S, Chen S.-Y, Yu X.-Q. Org. Lett. 2014; 16: 5269
- 3e Sharma R, Patel N, Vishwakarma RA, Bharatam PV, Bharate SB. Chem. Commun. 2016; 52: 1009
- 3f Xiang J.-C, Wang M, Cheng Y, Wu A.-X. Org. Lett. 2016; 18: 24
- 3g Wu X, Zhang J, Liu S, Gao Q, Wu A. Adv. Synth. Catal. 2016; 358: 218
- 3h Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin S.-F. Org. Lett. 2018; 20: 3399
- 3i Jadhav SD, Singh A. Org. Lett. 2017; 19: 5673
- 3j Tiwari AR, Nath SR, Joshi KA, Bhanage BM. J. Org. Chem. 2017; 82: 13239
- 3k Zhao P, Zhou Y, Yu X.-X, Huang C, Wu Y.-D, Yin G, Wu A.-X. Org. Lett. 2020; 22: 8528
- 3l Viswanadham KK. D. R, Prathap Reddy M, Sathyanarayana P, Ravi O, Kant R, Bathula SR. Chem. Commun. 2014; 50: 13517
- 3m Lim S.-G, Lee JH, Moon CW, Hong J.-B, Jun C.-H. Org. Lett. 2003; 5: 2759
- 3n Pilgrim BS, Gatland AE, McTernan CT, Procopiou PA, Donohoe TJ. Org. Lett. 2013; 15: 6190
- 4a Gutiérrez RU, Correa HC, Bautista R, Vargas JL, Jerezano AV, Delgado F, Tamariz J. J. Org. Chem. 2013; 78: 9614
- 4b Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
- 4c Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
- 4d Wang R, Fan H, Zhao W, Li F. Org. Lett. 2016; 18: 3558
- 4e Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, Paul ND. J. Org. Chem. 2019; 84: 2626
- 4f Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandaõ P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 4g Wu X, Geng X, Zhao P, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 1550
- 4h Wakade SB, Tiwari DK, Ganesh PS. K. P, Phanindrudu M, Likhar PR, Tiwari DK. Org. Lett. 2017; 19: 4948
- 4i Geng X, Wu X, Zhao P, Zhang J, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 4179
- 4j Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu Y.-d, Wu A.-X. Org. Lett. 2019; 21: 2708
- 4k Aksenov AV, Smirnov AN, Aksenov NA, Aksenova IV, Matheny JP, Rubin M. RSC Adv. 2015; 5: 8647
- 4l Wu J, Zhou Y, Wu T, Zhou Y, Chiang C.-W, Lei A. Org. Lett. 2017; 19: 6432
- 4m Liao Y, Qi H, Chen S, Jiang P, Zhou W, Deng G.-J. Org. Lett. 2012; 14: 6004
- 4n Xue W.-J, Guo Y.-Q, Gao F.-F, Li H.-Z, Wu A.-X. Org. Lett. 2013; 15: 890
- 4o Gao Q, Wu X, Jia F, Liu M, Zhu Y, Cai Q, Wu A. J. Org. Chem. 2013; 78: 2792
- 4p Nguyen TB, Pasturaud K, Ermolenko L, Al-Mourabit A. Org. Lett. 2015; 17: 2562
- 4q Huynh TV, Doan KV, Luong NT. K, Nguyen DT. P, Doan SH, Nguyen TT, Phan NT. S. RSC Adv. 2020; 10: 18423
- 5a Le Z.-G, Xie Z.-B, Xu J.-P. Molecules 2012; 17: 13368
- 5b Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1741
- 5c Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT. J. Org. Chem. 2012; 77: 5552
- 5d Mohan DC, Donthiri RR, Rao SN, Adimurthy S. Adv. Synth. Catal. 2013; 355: 2217
- 5e Zhang Y, Chen Z, Wu W, Zhang Y, Su W. J. Org. Chem. 2013; 78: 12494
- 5f Cai Z.-J, Wang S.-Y, Ji S.-J. Adv. Synth. Catal. 2013; 355: 2686
- 5g Wang F.-J, Xu H, Xin M, Zhang Z. Mol. Diversity 2016; 20: 659
- 5h Kumar GS, Ragini SP, Kumar AS, Meshram HM. RSC Adv. 2015; 5: 51576
- 5i Ge W, Zhu X, Wei Y. Eur. J. Org. Chem. 2013; 6015
- 5j Meng X, Yu C, Chen G, Zhao P. Catal. Sci. Technol. 2015; 5: 372
- 5k Liu S, Xi H, Zhang J, Wu X, Gao Q, Wu A. Org. Biomol. Chem. 2015; 13: 8807
- 5l Wu Y.-D, Geng X, Gao Q, Zhang J, Wu X, Wu A.-X. Org. Chem. Front. 2016; 3: 1430
- 5m Mukhopadhyay S, Dighe SU, Kolle S, Shukla PK, Batra S. Eur. J. Org. Chem. 2016; 3836
- 5n Udavant RN, Yadav AR, Shinde SS. Eur. J. Org. Chem. 2018; 3432
- 5o Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
- 5p Zhu Y.-p, Fei Z, Liu M.-c, Jia F.-c, Wu A.-x. Org. Lett. 2013; 15: 378
- 5q Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
- 6a Ravi O, Shaikh A, Upare A, Singarapu KK, Bathula SR. J. Org. Chem. 2017; 82: 4422
- 6b Xu C, Yin G, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
- 6c Mamedov VA, Zhukova NA, Beschastnova TN, Syakaev VV, Krivolapov DB, Mironova EV, Zamaletdinova AI, Rizvanov IK, Latypov SK. J. Org. Chem. 2015; 80: 1375
- 6d Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3887
- 6e Nguyen LA, Nguyen TT. T, Ngo QA, Nguyen TB. Org. Biomol. Chem. 2021; 19: 6015
- 6f Ilangovan A, Satish G. Org. Lett. 2013; 15: 5726
- 6g Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984
- 6h Gao F.-F, Xue W.-J, Wang J.-G, Wu A.-X. Tetrahedron 2014; 70: 4331
- 6i Huo J, Yang Y, Wang C. Org. Lett. 2021; 23: 3384
- 6j Verma A, Kumar S. Org. Lett. 2016; 18: 4388
- 6k Wang M, Tang B.-C, Ma J.-T, Wang Z.-X, Xiang J.-C, Wu Y.-D, Wang J.-G, Wu A.-X. Org. Biomol. Chem. 2019; 17: 1535
- 6l Mohan DC, Ravi C, Pappula V, Adimurthy S. J. Org. Chem. 2015; 80: 6846
- 6m Wang W, Han J, Sun J, Liu Y. J. Org. Chem. 2017; 82: 2835
- 6n Wu X, Zhao P, Geng X, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 3319
- 6o Rossler MD, Hartgerink CT, Zerull EE, Boss BL, Frndak AK, Mason MM, Nickerson LA, Romero EO, Van de Burg JE, Staples RJ, Anderson CE. Org. Lett. 2019; 21: 5591
- 7a Zhang Y, Wang D, Cui S. Org. Lett. 2015; 17: 2494
- 7b Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
- 7c Kissman HM, Farnsworth DW, Witkop B. J. Am. Chem. Soc. 1952; 74: 3948
- 7d Lu X.-M, Cai Z.-J, Li J, Wang S.-Y, Ji S.-J. RSC Adv. 2015; 5: 51501
- 7e Geng X, Wu X, Wang C, Zhao P, Zhou Y, Sun X, Wang L.-J, Guan W.-J, Wu Y.-D, Wu A.-X. Chem. Commun. 2018; 54: 12730
- 7f Guo T, Han L, Wang T, Lei L, Zhang J, Xu D. J. Org. Chem. 2020; 85: 9117
- 7g Schmidt EY, Semenova NV, Tatarinova IV, Ushakov IA, Vashchenko AV, Trofimov BA. Org. Lett. 2019; 21: 4275
- 7h Chung H, Kim J, González-Montiel GA, Ha-Yeon Cheong P, Lee HG. Org. Lett. 2021; 23: 1096
- 7i Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ. J. Med. Chem. 2010; 53: 8409
- 7j Geng X, Wang C, Huang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 7504
- 7k Lin Y.-m, Lu G.-p, Wang R.-k, Yi W.-b. Org. Lett. 2016; 18: 6424
- 7l Huang X, Rong N, Li P, Shen G, Li Q, Xin N, Cui C, Cui J, Yang B, Li D, Zhao C, Dou J, Wang B. Org. Lett. 2018; 20: 3332
- 7m Jiang J, Tuo X, Fu Z, Huang H, Deng G.-J. Org. Biomol. Chem. 2020; 18: 3234
- 7n Marpna ID, Shangpliang OR, Wanniang K, Kshiar B, Lipon TM, Laloo BM, Myrboh B. ACS Omega 2021; 6: 14518
- 7o Balaguez RA, Betin ES, Barcellos T, Lenardão EJ, Alves D, Schumacher RF. New J. Chem. 2017; 41: 1483
- 7p Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3518
- 7q Mukhopadhyay C, Das P, Butcher RJ. Org. Lett. 2011; 13: 4664
- 8a Yao X, Shao Y, Hu M, Xia Y, Cheng T, Chen J. Org. Lett. 2019; 21: 7697
- 8b Ramig K, Alli S, Cheng M, Leung R, Razi R, Washington M, Kudzma LV. Synlett 2007; 2868
- 8c Manjappa KB, Peng Y.-T, Liou T.-J, Yang D.-Y. RSC Adv. 2017; 7: 45269
- 8d Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897
- 8e Rogness DC, Larock RC. J. Org. Chem. 2010; 75: 2289
- 8f Chen S, Li Y, Ni P, Huang H, Deng G.-J. Org. Lett. 2016; 18: 5384
- 8g Chen S, Li Y, Ni P, Yang B, Huang H, Deng G.-J. J. Org. Chem. 2017; 82: 2935
- 8h Chen S, Jiang P, Wang P, Pei Y, Huang H, Xiao F, Deng G.-J. J. Org. Chem. 2019; 84: 3121
- 8i Gu Y, Huang W, Chen S, Wang X. Org. Lett. 2018; 20: 4285
- 8j Battini N, Padala AK, Mupparapu N, Vishwakarma RA, Ahmed QN. RSC Adv. 2014; 4: 26258
- 8k Geng X, Wang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 4939
- 8l Gao Q, Wu X, Liu S, Wu A. Org. Lett. 2014; 16: 1732
- 8m Wu X, Geng X, Zhao P, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 4584
- 8n Pham PH, Nguyen QT. D, Tran NK. Q, Nguyen VH. H, Doan SH, Ha HQ, Truong T, Phan NT. S. Eur. J. Org. Chem. 2018; 4431
- 8o Mishra S, Monir K, Mitra S, Hajra A. Org. Lett. 2014; 16: 6084
- 8p Zhang Q, Wang B, Ma H, Ablajan K. New J. Chem. 2019; 43: 17000
- 8q Zhou P, Huang Y, Wu W, Zhou J, Yu W, Jiang H. Org. Lett. 2019; 21: 9976
- 8r Pham PH, Nguyen KX, Pham HT. B, Nguyen TT, Phan NT. S. Org. Lett. 2019; 21: 8795
- 8s Brendel M, Sakhare PR, Dahiya G, Subramanian P, Kaliappan KP. J. Org. Chem. 2020; 85: 8102
- 8t Zhang S, Li L, Xin L, Liu W, Xu K. J. Org. Chem. 2017; 82: 2399
- 9a Okuma K, Koga T, Ozaki S, Suzuki Y, Horigami K, Nagahora N, Shioji K, Fukuda M, Deshimaru M. Chem. Commun. 2014; 50: 15525
- 9b Min L, Pan B, Gu Y. Org. Lett. 2016; 18: 364
- 9c Aksenov AV, Aksenov DA, Orazova NA, Aksenov NA, Griaznov GD, De Carvalho A, Kiss R, Mathieu V, Kornienko A, Rubin M. J. Org. Chem. 2017; 82: 3011
- 9d Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu Y.-D, Wu A. Org. Lett. 2017; 19: 408
- 9e Yuan S, Yue Y.-L, Zhang D.-Q, Zhang J.-Y, Yu B, Liu H.-M. Chem. Commun. 2020; 56: 11461
- 9f Kale A, Bingi C, Ragi NC, Sripadi P, Tadikamalla PR, Atmakur K. Synthesis 2017; 49: 1603
- 9g Mani GS, Rao AV. S, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. New. J. Chem. 2018; 42: 15820
- 9h Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3687
- 9i Yang R.-Y, Sun J, Tao Y, Sun Q, Yan C.-G. J. Org. Chem. 2017; 82: 13277
Corresponding Authors
Publication History
Received: 12 January 2022
Accepted after revision: 06 April 2022
Accepted Manuscript online:
14 April 2022
Article published online:
08 June 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Buskes MJ, Blanco MJ. Molecules 2020; 25: 3493
- 1b Zhang TY. The Evolving Landscape of Heterocycles in Drugs and Drug Candidates . In Advances in Heterocyclic Chemistry, Vol. 121. Scriven EF. V, Ramsden CA. Academic Press; Cambridge: 2017. Chap. 1, 1
- 1c Khan I, Zaib S, Ibrar A. Org. Chem. Front. 2020; 7: 3734
- 1d Lasso JD, Castillo-Pazos DJ, Li CJ. Chem. Soc. Rev. 2021; 50: 10955
- 1e Yasui O, Ishihara K. Science 2010; 328: 1376
- 1f Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
- 1g Renault O, Dallemagne P, Rault S. Org. Prep. Proced. Int. 1999; 31: 324
- 1h Garrido F, Raeppel S, Mann A, Lautens M. Tetrahedron Lett. 2001; 42: 265
- 1i Ramgren SD, Garg NK. Org. Lett. 2014; 16: 824
- 1j Rajai-Daryasarei S, Gohari MH, Mohammadi N. New J. Chem. 2021; 45: 20486
- 2a Das P, Ray S, Mukhopadhyay C. Org. Lett. 2013; 15: 5622
- 2b Wu X, Zhao P, Geng X, Wang C, Wu Y.-d, Wu A.-x. Org. Lett. 2018; 20: 688
- 2c Xu H, Wang F.-J, Xin M, Zhang Z. Eur. J. Org. Chem. 2016; 925
- 2d Wu J, Chen X, Xie Y, Guo Y, Zhang Q, Deng G.-J. J. Org. Chem. 2017; 82: 5743
- 2e Ghosh M, Mishra S, Hajra A. J. Org. Chem. 2015; 80: 5364
- 2f Manna S, Antonchick AP. Org. Lett. 2015; 17: 4300
- 2g Wang M, Xiang J.-C, Cheng Y, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 524
- 2h Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2012; 14: 6068
- 2i Liu C.-K, Yang Z, Zeng Y, Guo K, Fang Z, Li B. Org. Chem. Front. 2017; 4: 1508
- 2j Zhang J, Gao Q, Wu X, Geng X, Wu Y.-D, Wu A. Org. Lett. 2016; 18: 1686
- 2k de Toledo I, Grigolo TA, Bennett JM, Elkins JM, Pilli RA. J. Org. Chem. 2019; 84: 14187
- 2l Geng X, Wang C, Huang C, Bao Y, Zhao P, Zhou Y, Wu Y.-D, Feng L.-l, Wu A.-X. Org. Lett. 2020; 22: 140
- 2m Aegurla B, Peddinti RK. Org. Biomol. Chem. 2017; 15: 9643
- 2n Whitt J, Duke C, Ali MA, Chambers SA, Khan MM. K, Gilmore D, Alam MA. ACS Omega 2019; 4: 14284
- 2o Fang Z, Yin H, Lin L, Wen S, Xie L, Huang Y, Weng Z. J. Org. Chem. 2020; 85: 8714
- 2p Gao Q, Liu S, Wu X, Zhang J, Wu A. Org. Lett. 2015; 17: 2960
- 2q Wu X, Geng X, Zhao P, Zhang J, Wu Y.-d, Wu A.-x. Chem. Commun. 2017; 53: 3438
- 2r Xue W.-J, Li Q, Zhu Y.-P, Wang J.-G, Wu A.-X. Chem. Commun. 2012; 48: 3485
- 2s Dai P, Tan X, Luo Q, Yu X, Zhang S, Liu F, Zhang W.-H. Org. Lett. 2019; 21: 5096
- 2t Gu J, Fang Z, Yang Z, Li X, Zhu N, Wan L, Wei P, Guo K. RSC Adv. 2016; 6: 89073
- 2u Verbelen B, Dehaen W. Org. Lett. 2016; 18: 6412
- 2v Liu Y, Nie G, Zhou Z, Jia L, Chen Y. J. Org. Chem. 2017; 82: 9198
- 2w Bonache MA, Moreno-Fernández S, Miguel M, Sabater-Muñoz B, González-Muñiz R. ACS Comb. Sci. 2018; 20: 694
- 2x Gao M, Yang Y, Wu Y.-D, Deng C, Shu W.-M, Zhang D.-X, Cao L.-P, She N.-F, Wu A.-X. Org. Lett. 2010; 12: 4026
- 2y Sribalan R, Sangili A, Banuppriya G, Padmini V. New J. Chem. 2017; 41: 3414
- 2z Sadeghi M, Safari J, Zarnegar Z. RSC Adv. 2016; 6: 64749
- 3a Yin G, Liu Q, Ma J, She N. Green Chem. 2012; 14: 1796
- 3b Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Org. Biomol. Chem. 2021; 19: 2703
- 3c Huang H, Ji X, Wu W, Huang L, Jiang H. J. Org. Chem. 2013; 78: 3774
- 3d Xi L.-Y, Zhang R.-Y, Liang S, Chen S.-Y, Yu X.-Q. Org. Lett. 2014; 16: 5269
- 3e Sharma R, Patel N, Vishwakarma RA, Bharatam PV, Bharate SB. Chem. Commun. 2016; 52: 1009
- 3f Xiang J.-C, Wang M, Cheng Y, Wu A.-X. Org. Lett. 2016; 18: 24
- 3g Wu X, Zhang J, Liu S, Gao Q, Wu A. Adv. Synth. Catal. 2016; 358: 218
- 3h Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin S.-F. Org. Lett. 2018; 20: 3399
- 3i Jadhav SD, Singh A. Org. Lett. 2017; 19: 5673
- 3j Tiwari AR, Nath SR, Joshi KA, Bhanage BM. J. Org. Chem. 2017; 82: 13239
- 3k Zhao P, Zhou Y, Yu X.-X, Huang C, Wu Y.-D, Yin G, Wu A.-X. Org. Lett. 2020; 22: 8528
- 3l Viswanadham KK. D. R, Prathap Reddy M, Sathyanarayana P, Ravi O, Kant R, Bathula SR. Chem. Commun. 2014; 50: 13517
- 3m Lim S.-G, Lee JH, Moon CW, Hong J.-B, Jun C.-H. Org. Lett. 2003; 5: 2759
- 3n Pilgrim BS, Gatland AE, McTernan CT, Procopiou PA, Donohoe TJ. Org. Lett. 2013; 15: 6190
- 4a Gutiérrez RU, Correa HC, Bautista R, Vargas JL, Jerezano AV, Delgado F, Tamariz J. J. Org. Chem. 2013; 78: 9614
- 4b Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
- 4c Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
- 4d Wang R, Fan H, Zhao W, Li F. Org. Lett. 2016; 18: 3558
- 4e Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, Paul ND. J. Org. Chem. 2019; 84: 2626
- 4f Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandaõ P, Paul ND. J. Org. Chem. 2019; 84: 10160
- 4g Wu X, Geng X, Zhao P, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 1550
- 4h Wakade SB, Tiwari DK, Ganesh PS. K. P, Phanindrudu M, Likhar PR, Tiwari DK. Org. Lett. 2017; 19: 4948
- 4i Geng X, Wu X, Zhao P, Zhang J, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 4179
- 4j Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu Y.-d, Wu A.-X. Org. Lett. 2019; 21: 2708
- 4k Aksenov AV, Smirnov AN, Aksenov NA, Aksenova IV, Matheny JP, Rubin M. RSC Adv. 2015; 5: 8647
- 4l Wu J, Zhou Y, Wu T, Zhou Y, Chiang C.-W, Lei A. Org. Lett. 2017; 19: 6432
- 4m Liao Y, Qi H, Chen S, Jiang P, Zhou W, Deng G.-J. Org. Lett. 2012; 14: 6004
- 4n Xue W.-J, Guo Y.-Q, Gao F.-F, Li H.-Z, Wu A.-X. Org. Lett. 2013; 15: 890
- 4o Gao Q, Wu X, Jia F, Liu M, Zhu Y, Cai Q, Wu A. J. Org. Chem. 2013; 78: 2792
- 4p Nguyen TB, Pasturaud K, Ermolenko L, Al-Mourabit A. Org. Lett. 2015; 17: 2562
- 4q Huynh TV, Doan KV, Luong NT. K, Nguyen DT. P, Doan SH, Nguyen TT, Phan NT. S. RSC Adv. 2020; 10: 18423
- 5a Le Z.-G, Xie Z.-B, Xu J.-P. Molecules 2012; 17: 13368
- 5b Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1741
- 5c Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT. J. Org. Chem. 2012; 77: 5552
- 5d Mohan DC, Donthiri RR, Rao SN, Adimurthy S. Adv. Synth. Catal. 2013; 355: 2217
- 5e Zhang Y, Chen Z, Wu W, Zhang Y, Su W. J. Org. Chem. 2013; 78: 12494
- 5f Cai Z.-J, Wang S.-Y, Ji S.-J. Adv. Synth. Catal. 2013; 355: 2686
- 5g Wang F.-J, Xu H, Xin M, Zhang Z. Mol. Diversity 2016; 20: 659
- 5h Kumar GS, Ragini SP, Kumar AS, Meshram HM. RSC Adv. 2015; 5: 51576
- 5i Ge W, Zhu X, Wei Y. Eur. J. Org. Chem. 2013; 6015
- 5j Meng X, Yu C, Chen G, Zhao P. Catal. Sci. Technol. 2015; 5: 372
- 5k Liu S, Xi H, Zhang J, Wu X, Gao Q, Wu A. Org. Biomol. Chem. 2015; 13: 8807
- 5l Wu Y.-D, Geng X, Gao Q, Zhang J, Wu X, Wu A.-X. Org. Chem. Front. 2016; 3: 1430
- 5m Mukhopadhyay S, Dighe SU, Kolle S, Shukla PK, Batra S. Eur. J. Org. Chem. 2016; 3836
- 5n Udavant RN, Yadav AR, Shinde SS. Eur. J. Org. Chem. 2018; 3432
- 5o Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
- 5p Zhu Y.-p, Fei Z, Liu M.-c, Jia F.-c, Wu A.-x. Org. Lett. 2013; 15: 378
- 5q Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
- 6a Ravi O, Shaikh A, Upare A, Singarapu KK, Bathula SR. J. Org. Chem. 2017; 82: 4422
- 6b Xu C, Yin G, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
- 6c Mamedov VA, Zhukova NA, Beschastnova TN, Syakaev VV, Krivolapov DB, Mironova EV, Zamaletdinova AI, Rizvanov IK, Latypov SK. J. Org. Chem. 2015; 80: 1375
- 6d Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3887
- 6e Nguyen LA, Nguyen TT. T, Ngo QA, Nguyen TB. Org. Biomol. Chem. 2021; 19: 6015
- 6f Ilangovan A, Satish G. Org. Lett. 2013; 15: 5726
- 6g Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984
- 6h Gao F.-F, Xue W.-J, Wang J.-G, Wu A.-X. Tetrahedron 2014; 70: 4331
- 6i Huo J, Yang Y, Wang C. Org. Lett. 2021; 23: 3384
- 6j Verma A, Kumar S. Org. Lett. 2016; 18: 4388
- 6k Wang M, Tang B.-C, Ma J.-T, Wang Z.-X, Xiang J.-C, Wu Y.-D, Wang J.-G, Wu A.-X. Org. Biomol. Chem. 2019; 17: 1535
- 6l Mohan DC, Ravi C, Pappula V, Adimurthy S. J. Org. Chem. 2015; 80: 6846
- 6m Wang W, Han J, Sun J, Liu Y. J. Org. Chem. 2017; 82: 2835
- 6n Wu X, Zhao P, Geng X, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 3319
- 6o Rossler MD, Hartgerink CT, Zerull EE, Boss BL, Frndak AK, Mason MM, Nickerson LA, Romero EO, Van de Burg JE, Staples RJ, Anderson CE. Org. Lett. 2019; 21: 5591
- 7a Zhang Y, Wang D, Cui S. Org. Lett. 2015; 17: 2494
- 7b Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
- 7c Kissman HM, Farnsworth DW, Witkop B. J. Am. Chem. Soc. 1952; 74: 3948
- 7d Lu X.-M, Cai Z.-J, Li J, Wang S.-Y, Ji S.-J. RSC Adv. 2015; 5: 51501
- 7e Geng X, Wu X, Wang C, Zhao P, Zhou Y, Sun X, Wang L.-J, Guan W.-J, Wu Y.-D, Wu A.-X. Chem. Commun. 2018; 54: 12730
- 7f Guo T, Han L, Wang T, Lei L, Zhang J, Xu D. J. Org. Chem. 2020; 85: 9117
- 7g Schmidt EY, Semenova NV, Tatarinova IV, Ushakov IA, Vashchenko AV, Trofimov BA. Org. Lett. 2019; 21: 4275
- 7h Chung H, Kim J, González-Montiel GA, Ha-Yeon Cheong P, Lee HG. Org. Lett. 2021; 23: 1096
- 7i Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ. J. Med. Chem. 2010; 53: 8409
- 7j Geng X, Wang C, Huang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 7504
- 7k Lin Y.-m, Lu G.-p, Wang R.-k, Yi W.-b. Org. Lett. 2016; 18: 6424
- 7l Huang X, Rong N, Li P, Shen G, Li Q, Xin N, Cui C, Cui J, Yang B, Li D, Zhao C, Dou J, Wang B. Org. Lett. 2018; 20: 3332
- 7m Jiang J, Tuo X, Fu Z, Huang H, Deng G.-J. Org. Biomol. Chem. 2020; 18: 3234
- 7n Marpna ID, Shangpliang OR, Wanniang K, Kshiar B, Lipon TM, Laloo BM, Myrboh B. ACS Omega 2021; 6: 14518
- 7o Balaguez RA, Betin ES, Barcellos T, Lenardão EJ, Alves D, Schumacher RF. New J. Chem. 2017; 41: 1483
- 7p Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3518
- 7q Mukhopadhyay C, Das P, Butcher RJ. Org. Lett. 2011; 13: 4664
- 8a Yao X, Shao Y, Hu M, Xia Y, Cheng T, Chen J. Org. Lett. 2019; 21: 7697
- 8b Ramig K, Alli S, Cheng M, Leung R, Razi R, Washington M, Kudzma LV. Synlett 2007; 2868
- 8c Manjappa KB, Peng Y.-T, Liou T.-J, Yang D.-Y. RSC Adv. 2017; 7: 45269
- 8d Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897
- 8e Rogness DC, Larock RC. J. Org. Chem. 2010; 75: 2289
- 8f Chen S, Li Y, Ni P, Huang H, Deng G.-J. Org. Lett. 2016; 18: 5384
- 8g Chen S, Li Y, Ni P, Yang B, Huang H, Deng G.-J. J. Org. Chem. 2017; 82: 2935
- 8h Chen S, Jiang P, Wang P, Pei Y, Huang H, Xiao F, Deng G.-J. J. Org. Chem. 2019; 84: 3121
- 8i Gu Y, Huang W, Chen S, Wang X. Org. Lett. 2018; 20: 4285
- 8j Battini N, Padala AK, Mupparapu N, Vishwakarma RA, Ahmed QN. RSC Adv. 2014; 4: 26258
- 8k Geng X, Wang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 4939
- 8l Gao Q, Wu X, Liu S, Wu A. Org. Lett. 2014; 16: 1732
- 8m Wu X, Geng X, Zhao P, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 4584
- 8n Pham PH, Nguyen QT. D, Tran NK. Q, Nguyen VH. H, Doan SH, Ha HQ, Truong T, Phan NT. S. Eur. J. Org. Chem. 2018; 4431
- 8o Mishra S, Monir K, Mitra S, Hajra A. Org. Lett. 2014; 16: 6084
- 8p Zhang Q, Wang B, Ma H, Ablajan K. New J. Chem. 2019; 43: 17000
- 8q Zhou P, Huang Y, Wu W, Zhou J, Yu W, Jiang H. Org. Lett. 2019; 21: 9976
- 8r Pham PH, Nguyen KX, Pham HT. B, Nguyen TT, Phan NT. S. Org. Lett. 2019; 21: 8795
- 8s Brendel M, Sakhare PR, Dahiya G, Subramanian P, Kaliappan KP. J. Org. Chem. 2020; 85: 8102
- 8t Zhang S, Li L, Xin L, Liu W, Xu K. J. Org. Chem. 2017; 82: 2399
- 9a Okuma K, Koga T, Ozaki S, Suzuki Y, Horigami K, Nagahora N, Shioji K, Fukuda M, Deshimaru M. Chem. Commun. 2014; 50: 15525
- 9b Min L, Pan B, Gu Y. Org. Lett. 2016; 18: 364
- 9c Aksenov AV, Aksenov DA, Orazova NA, Aksenov NA, Griaznov GD, De Carvalho A, Kiss R, Mathieu V, Kornienko A, Rubin M. J. Org. Chem. 2017; 82: 3011
- 9d Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu Y.-D, Wu A. Org. Lett. 2017; 19: 408
- 9e Yuan S, Yue Y.-L, Zhang D.-Q, Zhang J.-Y, Yu B, Liu H.-M. Chem. Commun. 2020; 56: 11461
- 9f Kale A, Bingi C, Ragi NC, Sripadi P, Tadikamalla PR, Atmakur K. Synthesis 2017; 49: 1603
- 9g Mani GS, Rao AV. S, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. New. J. Chem. 2018; 42: 15820
- 9h Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3687
- 9i Yang R.-Y, Sun J, Tao Y, Sun Q, Yan C.-G. J. Org. Chem. 2017; 82: 13277