Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(22): 5017-5025
DOI: 10.1055/a-1834-2927
DOI: 10.1055/a-1834-2927
special topic
Aryne Chemistry in Synthesis
Synthesis of Multisubstituted Benzenes from Phenols via Multisubstituted Benzynes
This work was supported by KAKENHI Grant Number JP19K05451 (C; S.Y.); Uehara Foundation (S.Y.); and the Japan Agency for Medical Research and Development (AMED) under Grant Number JP21am0101098 (Platform Project for Supporting Drug Discovery and Life Science Research, BINDS).
Abstract
A new method to synthesize multifunctionalized arenes from simple phenols through aryne intermediates is described. Multisubstituted aryne precursors were prepared from phenols by Ir-catalyzed C–H borylation, deborylthiolation, O-triflylation, S-oxidation, and further modification through ortho-deprotonation directed by the sulfoxide moiety. Various multisubstituted arenes were synthesized by transformations of highly functionalized aryne intermediates generated from the o-sulfinylaryl triflates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1834-2927.
- Supporting Information
Publication History
Received: 17 March 2022
Accepted after revision: 25 April 2022
Accepted Manuscript online:
25 April 2022
Article published online:
09 June 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. Wiley; New Jersey: 2016
- 1b Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. Bräse S. RSC; Cambridge: 2016
- 2a Seo H, Ohmori K, Suzuki K. Chem. Lett. 2011; 40: 744
- 2b Suzuki S, Segawa Y, Itami K, Yamaguchi J. Nat. Chem. 2015; 7: 227
- 2c Sarkar D, Gulevich AV, Melkonyan FS, Gevorgyan V. ACS Catal. 2015; 5: 6792
- 2d Lungerich D, Reger D, Hölzel H, Riedel R, Martin MM. J. C, Hampel F, Jux N. Angew. Chem. Int. Ed. 2016; 55: 5602
- 2e Park J, Lee J, Chang S. Angew. Chem. Int. Ed. 2017; 56: 4256
- 2f Zhang XJ, Beaudry CM. Org. Lett. 2020; 22: 6086
- 2g Grau BW, Dill M, Hampel F, Kahnt A, Jux N, Tsogoeva SB. Angew. Chem. Int. Ed. 2021; 60: 22307
- 2h Nilova A, Sibbald PA, Valente EJ, Gonzalez-Montiel GA, Richardson HC, Brown KS, Cheong PH. Y, Stuart DR. Chem. Eur. J. 2021; 27: 7168
- 3 Modern Aryne Chemistry. Biju AT. Wiley-VCH; Weinheim: 2021
- 4a Tadross PM, Stoltz BM. Chem. Rev. 2012; 112: 3550
- 4b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
- 4c Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
- 4d Goetz AE, Shah TK, Garg NK. Chem. Commun. 2015; 51: 34
- 4e Bhojgude SS, Bhunia A, Biju AT. Acc. Chem. Res. 2016; 49: 1658
- 4f García-López J.-A, Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
- 4g Shi J, Li Y, Li Y. Chem. Soc. Rev. 2017; 46: 1707
- 4h Idiris FI. M, Jones CR. Org. Biomol. Chem. 2017; 15: 9044
- 4i Roy T, Biju A. Chem. Commun. 2018; 54: 2580
- 4j Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293
- 4k Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
- 4l Takikawa H, Nishii A, Sakai T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 4m Nakamura Y, Yoshida S, Hosoya T. Heterocycles 2019; 98: 1623
- 4n Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 5a Mizukoshi Y, Mikami K, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 74
- 5b García-López J.-A, Çetin M, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 2156
- 5c Nathel NF. F, Morrill LA, Mayr H, Garg NK. J. Am. Chem. Soc. 2016; 138: 10402
- 5d Umezu S, dos Passos Gomes G, Yoshinaga T, Sakae M, Matsumoto K, Iwata T, Alabugin I, Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298
- 5e Shi J, Xu H, Qiu D, He J, Li Y. J. Am. Chem. Soc. 2017; 139: 623
- 5f Kitamura T, Gondo K, Oyamada J. J. Am. Chem. Soc. 2017; 139: 8416
- 5g Zhou M, Ni C, Zeng Y, Hu J. J. Am. Chem. Soc. 2018; 140: 6801
- 5h Xiao X, Hoye TR. Nat. Chem. 2018; 10: 838
- 5i Mesgar M, Nguyen-Le J, Daugulis O. J. Am. Chem. Soc. 2018; 140: 13703
- 5j Gaykar RN, Guin A, Bhattacharjee S, Biju AT. Org. Lett. 2019; 21: 9613
- 5k Nishii A, Takikawa H, Suzuki K. Chem. Sci. 2019; 10: 3840
- 5l Tanaka H, Osaka I, Yoshida H. Chem. Lett. 2019; 48: 1032
- 5m Fujimoto H, Kusano M, Kodama T, Tobisu M. Org. Lett. 2020; 22: 2293
- 5n Haas TM, Wiesler S, Dürr-Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. Angew. Chem. Int. Ed. 2022; 61: e202113231
- 5o Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. J. Am. Chem. Soc. 2021; 143: 10853
- 5p Jančařík A, Holec J, Nagata Y, Šámal M, Gourdon A. Nat. Commun. 2022; 13: 223
- 6a Kobayashi T, Hosoya T, Yoshida S. J. Org. Chem. 2020; 85: 4448
- 6b Kanemoto K, Sakata Y, Hosoya T, Yoshida S. Chem. Lett. 2020; 49: 593
- 6c Kobayashi T, Hosoya T, Yoshida S. Chem. Lett. 2020; 49: 809
- 6d Matsuzawa T, Hosoya T, Yoshida S. Chem. Sci. 2020; 11: 9691
- 6e Nakamura Y, Sakata Y, Hosoya T, Yoshida S. Org. Lett. 2020; 22: 8505
- 6f Nakajima H, Hazama Y, Sakata Y, Uchida K, Hosoya T, Yoshida S. Chem. Commun. 2021; 57: 2621
- 6g Minoshima M, Uchida K, Nakamura Y, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 1868
- 6h Kobayashi T, Hosoya T, Yoshida S. Bull. Chem. Soc. Jpn. 2021; 94: 1823
- 7a Bronner SM, Goetz AE, Garg NK. J. Am. Chem. Soc. 2011; 133: 3832
- 7b Picazo E, Houk KN, Garg NK. Tetrahedron Lett. 2015; 56: 3511
- 8 Yoshida S, Uchida K, Hosoya T. Chem. Lett. 2014; 43: 116
- 9 Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
- 10a Yoshida S, Sugimura Y, Hazama Y, Nishiyama Y, Yano T, Shimizu S, Hosoya T. Chem. Commun. 2015; 51: 16613
- 10b Kanemoto K, Sugimura Y, Shimizu S, Yoshida S, Hosoya T. Chem. Commun. 2017; 53: 10640
- 10c Kanemoto K, Yoshida S, Hosoya T. Chem. Lett. 2018; 47: 85
- 11 Rauhut CB, Melzig L, Knochel P. Org. Lett. 2008; 10: 3891
- 12a Wender PA, Holt DA. J. Am. Chem. Soc. 1985; 107: 7771
- 12b Brummond KM, Gesenberg KD. Tetrahedron Lett. 1999; 40: 2231
- 13a Reynolds GA. J. Org. Chem. 1964; 29: 3733
- 13b Shi F, Waldo JP, Chen Y, Larock RC. Org. Lett. 2008; 10: 2409
- 14 Yoshida H, Shirakawa E, Honda Y, Hiyama T. Angew. Chem. Int. Ed. 2002; 41: 3247
- 15a Chen J, Li J, Plutschack MB, Berger F, Ritter T. Angew. Chem. Int. Ed. 2020; 59: 5616
- 15b Jia H, Häring AP, Berger F, Zhang L, Ritter T. J. Am. Chem. Soc. 2021; 143: 7623
- 16 Nakamura Y, Miyata Y, Uchida K, Yoshida S, Hosoya T. Org. Lett. 2019; 21: 5252
- 17 Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Chem. Lett. 2018; 47: 825
- 18 Medina JM, Mackey JL, Garg NK, Houk KN. J. Am. Chem. Soc. 2014; 136: 15798
Selected recent examples, see:
For recent reviews on arynes, see:
For recent aryne chemistry, see:
For our recent aryne chemistry, see: