Subscribe to RSS
DOI: 10.1055/a-1870-9282
Bifunctional Ionic Liquid Catalyzed Multicomponent Arylsulfonation of Phenols with Aryl Triazenes and DABSO for the Synthesis of Diaryl Sulfones
This work was supported by the Natural Science Foundation of Xinjiang Province (2021D01E10) and the National Natural Science Foundation of China (21861036 and 21961037).
Abstract
The bifunctional Lewis acidic ionic liquid (LAIL) catalyzed multicomponent arylsulfonation of phenols with aryl triazenes and DABSO was developed. By using LAILs as redox and Lewis acidic catalysts without any additional promoter or ligand through an N2 extrusion/SO2 insertion sequence, various aryl triazenes were transformed into aryl sulfonyl radicals by coupling with DABSO, and these were then coupled with phenoxy radicals to afford the corresponding diaryl sulfones in good yields. The good functional-group tolerance, gram-scale reaction, and avoidance of the use of SO2 gas further demonstrated the practicality of this arylsulfonation reaction.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1870-9282.
- Supporting Information
Publication History
Received: 21 April 2022
Accepted after revision: 08 June 2022
Accepted Manuscript online:
08 June 2022
Article published online:
26 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Galli C. Chem. Rev. 1988; 88: 765
- 1b Roglans A, Pla-Quintana A, Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
- 1c Taylor JG, Moro AV, Correia CR. D. Eur. J. Org. Chem. 2011; 1403
- 1d Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
- 1e Koziakov D, Wu G, Wangelin AJ. V. Org. Biomol. Chem. 2018; 16: 4942
- 1f Felpin F.-X, Sengupta S. Chem. Soc. Rev. 2019; 48: 1150
- 1g Habraken ER. M, Jupp AR, Slootweg JC. Synlett 2019; 30: 875
- 1h Medina-Mercado I, Porcel S. Chem. Eur. J. 2020; 26: 16206
- 1i Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
- 1j Ahn G.-N, Sharma BM, Lahore S, Yim S.-J, Vidyacharan S, Kim D.-P. Commun. Chem. 2021; 4: 53
- 1k Babu SS, Muthuraja P, Yadav P, Gopinath P. Adv. Synth. Catal. 2021; 363: 1782
- 2a Zollinger H. Acc. Chem. Res. 1973; 6: 335
- 2b Ullrich R, Grewer T. Thermochim. Acta 1993; 225: 201
- 2c Sheng M, Frurip D, Gorman D. J. Loss Prev. Process Ind. 2015; 38: 114
- 2d Landman IR, Suleymanov AA, Fadaei-Tirani F, Scopelliti R, Chadwick FM, Severin K. Dalton Trans. 2020; 49: 2317
- 2e Firth JD, Fairlamb IJ. S. Org. Lett. 2020; 22: 7057
- 3a Lazny R, Poplawski J, Köbberling J, Enders D, Bräse S. Synlett 1999; 1304
- 3b Kimball DB, Haley MM. Angew. Chem. Int. Ed. 2002; 41: 3338
- 3c Bräse S. Acc. Chem. Res. 2004; 37: 805
- 3d Kölmel DK, Jung N, Bräse S. Aust. J. Chem. 2014; 67: 328
- 3e Zhang Y, Cao D, Liu W, Hu H, Zhang X, Liu C. Curr. Org. Chem. 2015; 19: 151
- 3f Dong W, Chen Z, Xu J, Miao M, Ren H. Synlett 2016; 27: 1318
- 3g Sutar SM, Savanur HM, Malunavar SS, Prabhala P, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 6088
- 3h Zhang Y, Tang C, Liu Y, Liu C. Chin. J. Org. Chem. 2021; 41: 2587
- 4a Cao D, Zhang Y, Liu C, Wang B, Sun Y, Abdukadera A, Hu H, Liu Q. Org. Lett. 2016; 18: 2000
- 4b Zhang Y, Hu H, Liu C, Cao D, Wang B, Sun Y, Abdukadera A. Asian J. Org. Chem. 2017; 6: 102
- 4c Dai W.-C, Wang Z.-X. Org. Chem. Front. 2017; 4: 1281
- 4d Kumar S, Pandey AK, Singh R, Singh KN. Eur. J. Org. Chem. 2018; 5942
- 4e Pandey AK, Kumar S, Singh R, Singh KN. Tetrahedron 2018; 74: 6704
- 4f Zhang Y, Liu Y, Ma X, Ma X, Wang B, Li H, Huang Y, Liu C. Dyes Pigm. 2018; 158: 438
- 4g Suleymanov AA, Scopelliti R, Tirani FF, Severin K. Org. Lett. 2018; 20: 3323
- 4h Liu Y, Ma X, Wu G, Liu Z, Yang X, Wang B, Liu C, Zhang Y, Huang Y. New J. Chem. 2019; 43: 9255
- 4i Mao S, Chen Z, Wang L, Khadka DB, Xin M, Li P, Zhang S.-Q. J. Org. Chem. 2019; 84: 463
- 4j Vishwakarma RK, Kumar S, Sharma AK, Singh R, Singh KN. ChemistrySelect 2019; 4: 4064
- 4k Barragan E, Poyil AN, Yang C.-H, Wang H, Bugarin A. Org. Chem. Front. 2019; 6: 152
- 4l Tan J.-F, Bormann CT, Perrin FG, Chadwick FM, Severin K, Cramer N. J. Am. Chem. Soc. 2019; 141: 10372
- 4m Chaubey NR, Vishwakarma RK, Singh KN. ChemistrySelect 2019; 4: 8522
- 4n Liu C, Wang Z, Wang L, Li P, Zhang Y. Org. Biomol. Chem. 2019; 17: 9209
- 4o Chand S, Kumar S, Singh R, Singh KN. ChemistrySelect 2019; 4: 718
- 4p Wippert NA, Jung N, Bräse S. ACS Comb. Sci. 2019; 21: 568
- 4q Barragan E, Noonikara-Poyil A, Bugarin A. Asian J. Org. Chem. 2020; 9: 593
- 4r Zhang Y, Cao D, Ma X, Tang C, Wang B, Jin W, Xia Y, Liu C. ChemistrySelect 2021; 6: 5701
- 4s Wang B, Cao D, Ma X, Feng Y, Zhang L, Zhang Y, Liu C. Arabian J. Chem. 2021; 14: 103158
- 5a Li W, Wu X.-F. Org. Lett. 2015; 17: 1910
- 5b Yin Z, Wang Z, Wu X.-F. Eur. J. Org. Chem. 2017; 3992
- 5c Pandey AK, Chand S, Singh R, Kumar S, Singh KN. ACS Omega 2020; 5: 7627
- 6a Amarasekara AS. Chem. Rev. 2016; 116: 6133
- 6b Brown LC, Hogg JM, Swadźba-Kwaśny M. Top. Curr. Chem. 2017; 375: 78
- 6c Egorova KS, Gordeev EG, Ananikov VP. Chem. Rev. 2017; 117: 7132
- 6d Zhou J, Sui H, Jia Z, Yang Z, He L, Li X. RSC Adv. 2018; 8: 32832
- 6e Karimi B, Tavakolian M, Akbari M, Mansouri F. ChemCatChem 2018; 10: 3173
- 6f Eusebio J. Tetrahedron 2021; 88: 132143
- 6g Marullo S, D’Anna F, Rizzo C, Billeci F. Org. Biomol. Chem. 2021; 19: 2076
- 6h Koutsoukos S, Philippi F, Malaret F, Welton T. Chem. Sci. 2021; 12: 6820
- 6i Zhao Y, Han B, Liu Z. Acc. Chem. Res. 2021; 54: 3172
- 7a Popoff IC, Engle AR, Whitaker RL, Singhal GH. J. Med. Chem. 1971; 14: 1166
- 7b Wei X.-L, Wang YZ, Long SM, Bobeczko C, Epstein AJ. J. Am. Chem. Soc. 1996; 118: 2545
- 7c Spannhoff A, Heinke R, Bauer I, Trojer P, Metzger E, Gust R, Schuele R, Brosch G, Sippl W, Jung M. J. Med. Chem. 2007; 50: 2319
- 7d Sturino CF, O’Neill G, Lachance N, Boyd M, Berthelette C, Labelle M, Li L, Roy B, Scheigetz J, Tsou N, Aubin Y, Bateman KP, Chauret N, Day SH, Lévesque J, Seto C, Silva JH, Trimble LA, Carriere M, Denis D, Greig G, Kargman S, Lamontagne S, Mathieu M, Sawyer N, Slipetz D, Abraham WM, Jones T, McAuliffe M, Piechuta H, Nicoll-Griffith DA, Wang Z, Zamboni R, Young RN, Metters KM. J. Med. Chem. 2007; 50: 794
- 7e Kochi T, Noda S, Yoshimura K, Nozaki K. J. Am. Chem. Soc. 2007; 129: 8948
- 7f Wei H, Fang X, Han Y, Hu B, Yan Q. Eur. Polym. J. 2010; 46: 246
- 7g Guo M, Li X, Li L, Yu Y, Song Y, Liu B, Jiang Z. J. Membr. Sci. 2011; 380: 171
- 7h Bourbon P, Appert E, Martin-Mingot A, Michelet B, Thibaudeau S. Org. Lett. 2021; 23: 4115
- 8a Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
- 8b Azzi E, Lanfranco A, Moro R, Deagostino A, Renzi P. Synthesis 2021; 53: 3440
- 8c Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
- 8d Joseph D, Idris MA, Chen J, Lee S. ACS Catal. 2021; 11: 4169
- 9 Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Chem. Commun. 2021; 57: 8236
- 10a Zhou K, Chen M, Yao L, Wu J. Org. Chem. Front. 2018; 5: 371
- 10b Wang M, Fan Q, Jiang X. Green Chem. 2018; 20: 5469
- 10c Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
- 10d Qiu G, Zhou K, Wu J. Chem. Commun. 2018; 54: 12561
- 10e Qiu G, Lai L, Cheng J, Wu J. Chem. Commun. 2018; 54: 10405
- 10f Ye S, Qiu G, Wu J. Chem. Commun. 2019; 55: 1013
- 10g Wang M, Zhao J, Jiang X. ChemSusChem 2019; 12: 3064
- 10h Li Y, Chen S, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 8907
- 10i Meng Y, Wang M, Jiang X. Angew. Chem. Int. Ed. 2020; 59: 1346
- 10j Zeng D, Wang M, Deng W.-P, Jiang X. Org. Chem. Front. 2020; 7: 3956
- 10k Li Y, Wang M, Jiang X. Chin. J. Chem. 2020; 38: 1521
- 10l Ye S, Yang M, Wu J. Chem. Commun. 2020; 56: 4145
- 10m Li Y, Wang M, Jiang X. Org. Lett. 2021; 23: 4657
- 10n Wang M, Jiang X. Chem. Rec. 2021; 21: 3338
- 10o Andrews JA, Willis MC. Synthesis 2022; 54: 1695
- 11 Li W, Beller M, Wu X.-F. Chem. Commun. 2014; 50: 9513
- 12 Altwicker ER. Chem. Rev. 1967; 67: 475
- 13 Peris E, Mata J, Loch JA, Crabtree RH. Chem. Commun. 2001; 201
- 14 McGuinness DS, Gibson VC, Steed JW. Organometallics 2004; 23: 6288
For selected recent examples, see:
For selected recent examples, see: