Synthesis 2023; 55(01): 90-106 DOI: 10.1055/a-1873-6891
Building Chemical Probes Based on the Natural Products YM-254890 and FR900359: Advances toward Scalability
Matthew R. Medcalf
a
Department of Chemistry, Washington University, St. Louis, MO, USA
,
Ruby L. Krueger
a
Department of Chemistry, Washington University, St. Louis, MO, USA
,
Zach T. Medcalf
a
Department of Chemistry, Washington University, St. Louis, MO, USA
,
Peter A. Rosston
a
Department of Chemistry, Washington University, St. Louis, MO, USA
,
Yu Zhu
a
Department of Chemistry, Washington University, St. Louis, MO, USA
,
Kevin M. Kaltenbronn
b
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
,
Kendall J. Blumer∗
b
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
,
Kevin D. Moeller∗
a
Department of Chemistry, Washington University, St. Louis, MO, USA
› Author Affiliations We thank the National Institutes of Health (2R01GM124093) for their generous support of our work.
Abstract
The biological activity of natural products YM-254890 (YM) and FR900359 (FR) has led to significant interest in both their synthesis and the construction of more simplified analogs. While the simplified analogs lose much of the potency of the natural products, they are of interest in their own right, and their synthesis has revealed synthetic barriers to the family of molecules that need to be addressed if a scalable synthesis of YM and FR analogs is to be constructed. In the work described here, a synthetic route to simplified analogs of YM is examined and strategies for circumventing some of the challenges inherent to constructing the molecules are forwarded.
Key words
YM-254890 -
FR900359 -
analogs -
scalable synthesis
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1873-6891.
Supporting Information
Publication History
Received: 25 April 2022
Accepted: 10 June 2022
Accepted Manuscript online: 10 June 2022
Article published online: 06 October 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Taniguchi M,
Nagai K,
Arao N,
Kawasaki T,
Saito T,
Moritani Y,
Takasaki J,
Hayashi K,
Fujita S,
Suzuki K,
Tsukamoto S.
J. Antibiot. (Tokyo) 2003; 56: 358
2
Kaur H,
Harris PW,
Little PJ,
Brimble MA.
Org. Lett. 2015; 17: 492
3
Flock T,
Ravarani CN,
Sun D,
Venkatakrishnan AJ,
Kayikci M,
Tate CG,
Veprintsev DB,
Babu MM.
Nature 2015; 524: 173
4
Xiong X.-F,
Zhang H,
Underwood CR,
Harpsøe K,
Gardella TJ,
Wöldike MF,
Mannstadt M,
Gloriam DE,
Bräuner-Osborne H,
Strømgaard K.
Nat. Chem. 2016; 8: 1035
5
Zhang H,
Nielsen AL,
Boesgaard MW,
Harpsøe K,
Daly NL,
Xiong X.-F,
Underwood CR,
Haugaard-Kedström LM,
Bräuner-Osborne H,
Gloriam DE,
Strømgaard K.
Eur. J. Med. Chem. 2018; 156: 847
6
Zhang H,
Xiong X.-F,
Boesgaard MW,
Underwood CR,
Bräuner-Osborne H,
Strømgaard K.
ChemMedChem 2017; 11: 830
7
Reher R,
Kühl T,
Annala S,
Benkel T,
Kaufmann D,
Nubbemeyer B,
Odhiambo JP,
Heimer P,
Bäuml CA,
Kehraus S,
Crüsemann M,
Kostenis E,
Tietze D,
König GM,
Imhof D.
ChemMedChem 2018; 13: 1634
8
Taniguchi M,
Suzumara K,
Nagai K,
Kawasaki T,
Takasaki J,
Sekiguchi M,
Moritani Y,
Saito T,
Hayashi K,
Fujita S,
Tsukamoto S,
Suzuki K.
Bioorg. Med. Chem. 2004; 12: 3125
9
Fujioka M,
Koda S,
Morimoto Y,
Biemann K.
J. Org. Chem. 1988; 53: 2820
10
Kawasaki T,
Taniguchi M,
Moritani Y,
Hayashi K,
Saito T,
Takasaki J,
Nagai K,
Inagaki O,
Shikama H.
Thromb. Haemostasis 2003; 90: 406
11
Kawasaki T,
Taniguchi M,
Moritani Y,
Uemura T,
Shigenaga T,
Takamatsu H,
Hayashi K,
Takasaki J,
Saito T,
Nagai K.
Thromb. Haemostasis 2005; 94: 184
12
Zaima K,
Deguchi J,
Matsuno Y,
Kaneda T,
Hirasawa Y,
Morita H.
J. Nat. Med. 2013; 67: 196
13
Schrage R,
Schmitz AL,
Gaffal E,
Annala S,
Kehraus S,
Wenzel D,
Bullesbach KM,
Bald T,
Inoue A,
Shinjo Y,
Galandrin S,
Shridhar N,
Hesse M,
Grundmann M,
Merten N,
Charpentier TH,
Martz M,
Butcher AJ,
Slodczyk T,
Armando S,
Effern M,
Namkung Y,
Jenkins L,
Horn V,
Stossel A,
Dargatz H,
Tietze D,
Imhof D,
Gales C,
Drewke C,
Muller CE,
Holzel M,
Milligan G,
Tobin AB,
Gomeza J,
Dohlman HG,
Sondek J,
Harden TK,
Bouvier M,
Laporte SA,
Aoki J,
Fleischmann BK,
Mohr K,
Konig GM,
Tuting T,
Kostenis E.
Nat. Commun. 2015; 6: 10156
14
Nishimura A,
Kitano K,
Takasaki J,
Taniguchi M,
Mizuno N,
Tago K,
Hakoshima T,
Itoh H.
Proc. Natl. Acad. Sci. USA 2010; 107: 13666
15
Onken MD,
Makepeace CM,
Kaltenbronn KM,
Kanai SM,
Todd TD,
Wang S,
Broekelmann TJ,
Rao PK,
Cooper JA,
Blumer K.
Sci. Signaling 2018; 11: eaao6852
16
Jie L,
Owens EA,
Rensing DT,
Moeller KD,
Plante LA,
Meucci O,
Osei-Owusu P.
Physiol. Rep. 2016; 4: e12692
17
Meleka MM,
Edwards AJ,
Xia J,
Dahlen SA,
Mohanty E,
Medcalf M,
Aggarway S,
Moeller KD,
Mortensen OV,
Osei-Owusu P.
Pharmacol. Res. 2019; 141: 264
18
Hermes C,
Richarz R,
Wirtz DA,
Patt J,
Hanke W,
Kehraus S,
Voβ JH,
Küppers J,
Ohbayashi T,
Namasivayam V,
Alenfelder J,
Inoue A,
Mergaert P,
Gütschow M,
Müller CE,
Kostenis E,
König GM,
Crüsemann M.
Nat. Commun. 2021; 12: 144
19
Pistorius D,
Buntin K,
Weber E,
Richard E,
Bouquet C,
Wollbrett S,
Regenass H,
Peón V,
Böhm M,
Kessler R,
Gempeler T,
Haberkorn A,
Wimmer L,
Lanshoeft C,
Davis J,
Hainz D,
D’Alessio A,
Manchado E,
Petersen F.
Chem. Eur. J. 2021; e202103888
20
Rensing DT,
Uppal S,
Blumer KJ,
Moeller KD.
Org. Lett. 2015; 17: 2270
21
Rensing DT,
Moeller KD.
Strategies Tactics Org. Synth. 2016; 12: 215
22
Ojima I,
Habus I,
Zhao M,
Zucco M,
Park YH,
Sun CM,
Brigaud T.
Tetrahedron 1992; 48: 6985
23
Kanai SM,
Edwards AJ,
Rurik JG,
Osei-Owusu P,
Blumer KJ. P.
J. Biol. Chem. 2017; 292: 19266