Synlett 2022; 33(16): 1607-1618
DOI: 10.1055/a-1874-3463
account

No Sacrifice No Gain: Construction of Cleavable Bridged Macrobicyclic Olefins for Precision Polymers

Zhen Yu
,
Li Wang
,
Li Liu
,
Meng Wang
,
Hong Yang
This research was supported by National Natural Science Foundation of China (Grant No. 21971037) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Abstract

Olefin metathesis polymerization has commanded great attention as a versatile method for preparing macromolecular materials with advanced architectures and functions in academia and industry. This Account summarizes our endeavors directed towards the preparation of various functional polymers by using olefin metathesis polymerization strategies in particular acyclic diene metathesis (ADMET) polymerization and ring-opening metathesis polymerization (ROMP), during the last ten years. In addition, the merits and limitations of ADMET polymerization and ROMP techniques are also demonstrated and compared. Notably, this Account highlights our recently developed sequence-controlled ROMP strategy for production of precision polymers in a regio-/stereoselective manner, the rollercoaster journey for the evolution of a macrobicyclic olefin system containing a sacrificial silyloxide bridge is described in detail.

1 Introduction

2 Olefin Metathesis Step-Growth Polymerization Approaches

3 Olefin Metathesis Chain-Growth Polymerization Approaches

4 ROMP of Cleavable Bridged Macrobicyclic Olefins

5 Conclusion

Supporting Information



Publication History

Received: 28 April 2022

Accepted after revision: 13 June 2022

Accepted Manuscript online:
13 June 2022

Article published online:
07 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Watson JD, Crick FH. C. Nature 1953; 171: 737
    • 1b Watson JD, Crick FH. C. JAMA, J. Am. Med. Assoc. 1993; 269: 1967
    • 1c Crick FH. C, Watson JD. Proc. R. Soc. London, Ser. A 1954; 223: 80
  • 2 Livolant F. Phys. A 1991; 176: 117
    • 3a Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO, Pindak R, Bellini T, Clark NA. Science 2007; 318: 1276
    • 3b Zanchetta G, Nakata M, Buscaglia M, Bellini T, Clark NA. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 1111
    • 5a Lutz J.-F, Ouchi M, Liu DR, Sawamoto M. Science 2013; 341: 1238149
    • 5b Meier MA. R, Barner-Kowollik C. Adv. Mater. 2019; 31: 1806027
    • 5c Rutten MG. T. A, Vaandrager FW, Elemans JA. A. W, Nolte RJ. M. Nat. Rev. Chem. 2018; 2: 365
    • 5d Pasini D, Takeuchi D. Chem. Rev. 2018; 118: 8983
    • 5e Martens S, Holloway JO, Prez FE. D. Macromol. Rapid Commun. 2017; 38: 1700469
    • 5f Zhang Z, You Y, Hong C. Macromol. Rapid Commun. 2018; 39: 1800362
    • 5g Lutz J.-F, Lehn J.-M, Meijer EW, Matyjaszewski K. Nat. Rev. Mater. 2016; 1: 16024
    • 5h Hill SA, Steinfort R, Hartmann L. Polym. Chem. 2021; 12: 4439
    • 5i Neve JD, Haven JJ, Maes L, Junkers T. Polym. Chem. 2018; 9: 4692
    • 5j Goseki R, Ito S, Matsuo Y, Higashihara T, Hirao A. Polymers 2017; 9: 470
    • 5k Qu C, He J. Sci. Chin. Chem. 2015; 58: 1651
  • 6 Bielawski CW, Grubbs RH. Prog. Polym. Sci. 2007; 32: 1
  • 7 Sun H, Liang Y, Thompson MP, Gianneschi NC. Prog. Polym. Sci. 2021; 120: 101427
  • 8 Sinclair F, Alkattan M, Prunet J, Shaver MP. Polym. Chem. 2017; 8: 3385
  • 9 Yu Z, Wang M, Chen X, Huang S, Yang H. Angew. Chem. Int. Ed. 2022; 61: e202112526
  • 10 da Silva LC, Rojas G, Schulz MD, Wagener KB. Prog. Polym. Sci. 2017; 69: 79
  • 11 Atallah P, Wagener KB, Schulz MD. Macromolecules 2013; 46: 4735
  • 12 Baughman TW, Wagener KB. Adv. Polym. Sci. 2005; 176: 1
    • 13a Mutlu H, de Espinosa LM, Meier MA. R. Chem. Soc. Rev. 2011; 40: 1404
    • 13b Li H, Caire da Silva L, Schulz MD, Rojas G, Wagener KB. Polym. Int. 2017; 66: 7
    • 14a Schulz MD, Wagener KB. Macromol. Chem. Phys. 2014; 215: 1936
    • 14b Opper KL, Wagener KB. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 821
  • 15 Yang H, Lv Y, Lin B, Zhang X, Sun Y, Guo L. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 1086
  • 16 Liu L, Liu M, Deng L, Lin B, Yang H. J. Am. Chem. Soc. 2017; 139: 11333
  • 17 Liu L, Wang M, Guo L, Sun Y, Zhang X, Lin B, Yang H. Macromolecules 2018; 51: 4516
    • 18a Chatterjee AK, Choi TL, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
    • 18b Gorodetskaya IA, Choi TL, Grubbs RH. J. Am. Chem. Soc. 2007; 129: 12672
    • 18c Gorodetskaya IA, Gorodetsky AA, Vinogradova EV, Grubbs RH. Macromolecules 2009; 42: 2895
    • 18d de Espinosa LM, Meier MA. R. Chem. Commun. 2011; 47: 1908
    • 18e Sehlinger A, de Espinosa LM, Meier MA. R. Macromol. Chem. Phys. 2013; 214: 2821
    • 18f Demel S, Slugovc C, Stelzer F, Fodor-Csorba K, Galli G. Macromol. Rapid Commun. 2003; 24: 636
  • 19 Wang L, Wang M, Guo L, Sun Y, Zhang X, Lin B, Yang H. Macromolecules 2019; 52: 649
    • 20a Frenzel U, Nuyken O. J. Polym. Sci., Part A: Polym. Chem. 2002; 40: 2895
    • 20b Becker G, Wurm FR. Chem. Soc. Rev. 2018; 47: 7739
    • 20c Bielawski CW, Grubbs RH. Angew. Chem. Int. Ed. 2000; 39: 2903
    • 20d Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL. J. Am. Chem. Soc. 2002; 124: 14922
    • 21a Radzinski SC, Foster JC, Scannelli SJ, Weaver JR, Arrington KJ, Matson JB. ACS Macro Lett. 2017; 6: 1175
    • 21b Gringolts ML, Denisova YI, Finkelshtein ES, Kudryavtsev YV. Beilstein J. Org. Chem. 2019; 15: 218
  • 22 Isarov SA, Pokorski JK. ACS Macro Lett. 2015; 4: 969
    • 23a Shieh P, Nguyen HV. T, Johnson JA. Nat. Chem. 2019; 11: 1124
    • 23b Mallick A, Xu Y, Lin Y, He J, Chan-Park MB, Liu XW. Polym. Chem. 2018; 9: 372
    • 24a Pearce AK, Foster JC, O’Reilly RK. J. Polym. Sci., Part A: Polym. Chem. 2019; 57: 1621
    • 24b Duda A, Kowalski A. Handbook of Ring-Opening Polymerization . Wiley-VCH; Weinheim: 2009: 1
  • 25 Yang H, Zhang F, Lin B, Keller P, Zhang X, Sun Y, Guo L. J. Mater. Chem. C 2013; 1: 1482
  • 26 Geng B, Guo L, Lin B, Keller P, Zhang X, Sun Y, Yang H. Polym. Chem. 2015; 6: 5281
  • 27 Wang L, Lu N, Huang S, Wang M, Chen X, Yang H. CCS Chem. 2020; 2: 1787
    • 28a Xue Z, Mayer MF. Soft Matter 2009; 5: 4600
    • 28b McKelvey RD. J. Chem. Educ. 2009; 73: A174
    • 29a Jérôme C, Lecomte P. Adv. Drug Delivery Rev. 2008; 60: 1056
    • 29b Feng J, Zhuo RX, Zhang XZ. Prog. Polym. Sci. 2012; 37: 211
    • 29c Hong M, Chen EY.-X. Green Chem. 2017; 19: 3692
    • 29d Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Chem. Rev. 2004; 104: 6147
    • 29e Williams CK. Chem. Soc. Rev. 2007; 36: 1573
    • 29f Blake TR, Waymouth RM. J. Am. Chem. Soc. 2014; 136: 9252
  • 30 Deng L, Guo L, Lin B, Zhang X, Sun Y, Yang H. Polym. Chem. 2016; 7: 5265
    • 31a Hodge P, Kamau SD. Angew. Chem. Int. Ed. 2003; 42: 2412
    • 31b Gautrot JE, Zhu XX. Angew. Chem. Int. Ed. 2006; 45: 6872
    • 31c Kang S, Berkshire BM, Xue Z, Gupta M, Layode C, May PA, Mayer MF. J. Am. Chem. Soc. 2008; 130: 15246
  • 33 Varlas S, Lawrenson SB, Arkinstall LA, O’Reilly RK, Foster JC. Prog. Polym. Sci. 2020; 107: 101278
    • 34a Park H, Choi T.-L. J. Am. Chem. Soc. 2012; 134: 7270
    • 34b Park H, Lee H.-K, Choi T.-L. J. Am. Chem. Soc. 2013; 135: 10769
    • 34c Lee H.-K, Bang K.-T, Hess A, Grubbs RH, Choi T.-L. J. Am. Chem. Soc. 2015; 137: 9262
    • 34d Lee H.-K, Lee J, Kockelmann J, Herrmann T, Sarif M, Choi T.-L. J. Am. Chem. Soc. 2018; 140: 10536
    • 34e Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi T.-L. Angew. Chem. Int. Ed. 2021; 60: 849
    • 34f Sui X, Zhang T, Pabarue AB, Fu L, Gutekunst WR. J. Am. Chem. Soc. 2020; 142: 12942
    • 34g Kang C, Jung K, Ahn S, Choi T.-L. J. Am. Chem. Soc. 2020; 142: 17140
    • 35a Gutekunst WR, Hawker CJ. J. Am. Chem. Soc. 2015; 137: 8038
    • 35b Bhaumik A, Peterson GI, Kang C, Choi T.-L. J. Am. Chem. Soc. 2019; 141: 12207
    • 35c He Y, Wu Y, Zhang M, Zhang Y, Ding H, Zhang K. Macromolecules 2021; 54: 5797
    • 36a Hejl A, Scherman OA, Grubbs RH. Macromolecules 2005; 38: 7214
    • 36b Sutthasupa S, Shiotsuki M, Sanda F. Polym. J. 2010; 42: 905
    • 36c Lerum MF. Z, Chen W. Langmuir 2011; 27: 5403
  • 37 Hlil AR, Balogh J, Moncho S, Su H.-L, Tuba R, Brothers EN, Al-Hashimi M, Bazzi HS. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 3137
    • 38a Kobayashi S, Pitet LM, Hillmyer MA. J. Am. Chem. Soc. 2011; 133: 5794
    • 38b Zhang J, Matta ME, Hillmyer MA. ACS Macro Lett. 2012; 1: 1383
    • 38c Zhang J, Matta ME, Martinez H, Hillmyer MA. Macromolecules 2013; 46: 2535
    • 38d Martinez H, Ren N, Matta ME, Hillmyer MA. Polym. Chem. 2014; 5: 3507
  • 39 Yasuda M, Onishi Y, Ueba M, Miyai T, Baba A. J. Org. Chem. 2001; 66: 7741
    • 40a Hahn SF. J. Polym. Sci., Part A: Polym. Chem. 1992; 30: 397
    • 40b Scherman OA, Kim HM, Grubbs RH. Macromolecules 2002; 35: 5366
    • 40c Neary WJ, Kennemur JG. Macromol. Rapid Commun. 2016; 37: 975
  • 41 Kobayashi S, Fukuda K, Kataoka M, Tanaka M. Macromolecules 2016; 49: 2493
    • 42a Walker R, Conrad RM, Grubbs RH. Macromolecules 2009; 42: 599
    • 42b Chang AB, Lin TP, Thompson NB, Luo SX, Liberman-Martin AL, Chen HY, Lee B, Grubbs RH. J. Am. Chem. Soc. 2017; 139: 17683
    • 42c Rule JD, Moore JS. Macromolecules 2002; 35: 7878
    • 43a Nowalk JA, Fang C, Short AL, Weiss RM, Swisher JH, Liu P, Meyer TY. J. Am. Chem. Soc. 2019; 141: 5741
    • 43b Short AL, Fang C, Nowalk JA, Weiss RM, Liu P, Meyer TY. ACS Macro Lett. 2018; 7: 858
    • 44a Anderson DR, Ung T, Mkrtumyan G, Bertrand G, Grubbs RH, Schrodi Y. Organometallics 2008; 27: 563
    • 44b Hyatt MG, Walsh DJ, Lord RL, Andino-Martinez JG, Guironnet D. J. Am. Chem. Soc. 2019; 141: 17918
  • 45 Radzinski SC, Foster JC, Chapleski RC, Troya D, Matson JB. J. Am. Chem. Soc. 2016; 138: 6998