Subscribe to RSS
DOI: 10.1055/a-1878-7795
Synthetic Strategies Towards the Meroterpenoids Cochlearols A and B from Ganoderma cochlear
This work was supported by the National Science Foundation (NSF CHE-1654223), the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, and the Camille and Henry Dreyfus Foundation (fellowships to C.S.S.).
![](https://www.thieme-connect.de/media/synthesis/202311/lookinside/thumbnails/ss-2022-r0246-sr_10-1055_a-1878-7795-1.jpg)
Abstract
Since the first reports of their isolation, the meroterpenoids cochlearol A and B have attracted interest from the synthetic community for their unique structural features. This review describes the attempted and successful total syntheses of these natural products and provides a summary of the strategies developed in the years since their isolation.
1 Introduction
2 Overview of Cochlearol A Syntheses
3 Tong’s Approach Towards Cochlearol A
4 Liu and Qin’s Total Synthesis of (±)-Cochlearol A
5 Ishigami’s Formal Synthesis of (±)-Cochlearol A
6 Chandrasekhar’s Formal Synthesis of (±)-Cochlearol A
7 Sugita’s Synthesis of (±)-Cochlearol B
8 Schindler’s Synthesis of (+)-Cochlearol B
9 Conclusions
Publication History
Received: 18 May 2022
Accepted after revision: 20 June 2022
Accepted Manuscript online:
20 June 2022
Article published online:
09 March 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Upadhyay M, Shrivastava B, Jain A, Kidwai M, Kumar S, Gomes J, Goswami D, Panda D, Kuhad R. Ann. Microbiol. 2014; 64: 839
- 2 Peng X, Qiu M. Nat. Prod. Bioprospect. 2018; 8: 137
- 3 Gong T, Yan R, Chen R, Yang B. Chemical Components of Ganoderma . In Advances in Experimental Medicine and Biology, Vol. 1181. Lin Z, Yang B. Springer; Singapore: 2019: 59
- 4 Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Molecules 2019; 24: 4075
- 5a Paterson RR. M. Phytochemistry 2006; 67: 1985
- 5b Zhang L.-J, Xie Y, Wang Y.-Q, Xu Y.-Y, Mei R.-Q. Nat. Prod. Res. 2021; 35: 2199
- 5c Qin F.-Y, Chen Y.-Y, Zhang J.-J, Cheng Y.-X. Front. Chem. 2022; 10: 881298
- 6 Dou M, Di L, Zhou L.-L, Yan Y.-M, Wang X.-L, Zhou F.-J, Yang Z.-L, Li R.-T, Hou F.-F, Cheng YX. Org. Lett. 2014; 16: 6064
- 7 Ren J. Studies on Diastereoselective Dichlorination and Total Syntheses of Natural Products with 6,8-Dioxabicyclo[3.2.1]octane Framework. In Ph.D. Thesis. Hong Kong University of Science and Technology; Hong Kong: 2015. https://hdl.handle.net/1783.1/94654
- 8 Achmatowicz O, Bukowski P, Szechner B, Zwierzchowska Z, Zamojski A. Tetrahedron 1971; 27: 1973
- 9a Mitchell LJ, Lewis W, Moody CJ. Green Chem. 2013; 15: 2830
- 9b Schiel C, Oelgemöller M, Ortner J, Mattay J. Green Chem. 2001; 3: 224
- 10 Zhang D.-W, Xu W.-D, Fan H.-L, Liu H.-M, Chen D, Liu D.-D, Qin H.-B. Org. Lett. 2019; 21: 6761
- 11 Naruse K, Katsuta R, Yajima A, Nukada T, Watanabe H, Ishigami K. Tetrahedron Lett. 2020; 61: 151845
- 12 Li X, Liu X, Jiao X, Yang H, Yao Y, Xie P. Org. Lett. 2016; 18: 1944
- 13 Nicolaou KC, Gray DL. F. J. Am. Chem. Soc. 2004; 126: 607
- 14 Concellón JM, Cuervo H, Fernández-Fano R. Tetrahedron 2001; 57: 8983
- 15 Venkatesh T, Mainkar PS, Chandrasekhar S. J. Org. Chem. 2021; 86: 5412
- 16 Mashiko T, Shingai Y, Sakai J, Kamo S, Adachi S, Matsuzawa A, Sugita K. Angew. Chem. Int. Ed. 2021; 60: 24484
- 17a Bredereck H, Simchen G, Rebsdat S, Kantlehner W, Horn P, Wahl R, Hoffman H, Greishaber P. Chem. Ber. 1968; 101: 41
- 17b Shiina Y, Tomata Y, Miyashita M, Tanino K. Chem. Lett. 2010; 39: 835
- 18 Richardson AD, Vogel TR, Traficante EF, Glover KJ, Schindler CS. Angew. Chem. Int. Ed. 2022; 61: e202201213
- 19 Wang J, Dong Z, Yang C, Dong G. Nat. Chem. 2019; 11: 1106
- 20 Hoye TR, Humpal PE, Moon B. J. Am. Chem. Soc. 2000; 122: 4982