Synlett, Table of Contents Synlett 2022; 33(16): 1645-1654DOI: 10.1055/a-1896-3512 letter Iron-Catalyzed Synthesis of Pyrrolo[2,1-a]isoquinolines via 1,3-Dipolar Cycloaddition/Elimination/Aromatization Cascade and Modifications Xiao-Hui Chen a Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China , Yu-Yi Pan a Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China , Wei-Xun Wang b College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. of China , Hai-Lei Cui ∗ a Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P. R. of China › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract We have developed an iron-catalyzed synthesis of pyrrolo[2,1-a]isoquinoline derivatives with tetrahydroisoquinolines, arylacyl bromides, and nitroolefins. Highly functionalized pyrrolo[2,1-a]isoquinolines can be obtained in moderate to good yields through a three-component N-alkylation/oxidative 1,3-dipolar cycloaddition/elimination/aromatization cascade. The obtained products in this study can be easily modified by easy chemical transformations to structurally complex molecules bearing privileged framework. Key words Key wordsiron catalysis - pyrrolo[2,1-a]isoquinoline - tetrahydroisoquinoline - nitroolefin - dipolar cycloaddition Full Text References References and Notes 1a Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264 1b Banwell M, Lan P. In Targets in Heterocyclic Systems – Chemistry and Properties, Vol. 24. Attanasi OA, Gabriele B, Merino P, Spinelli D. Società Chimica Italiana; Roma: 2020: 208-226 1c Fukuda T, Ishibashi F, Iwao M. Heterocycle 2011; 83: 491 1d Mohan C, Krishna RB, Sivanandan ST, Ibnusaud I. Eur. J. Org. Chem. 2021; 4911 2a Bailly C. Mar. Drugs 2015; 13: 1105 2b Reyes-Gutiérrez PE, Camacho JR, Ramírez-Apan MT, Osornio YM, Martínez R. Org. Biomol. Chem. 2010; 8: 4374 2c Chávez-Santos RM, Reyes-Gutiérrez PE, Torres-Ochoa RO, Ramírez-Apan MT, Martínez R. Chem. Pharm. Bull. 2017; 65: 973 3a Matveeva MD, Purgatorio R, Voskressensky LG, Altomare CD. Future Med. Chem. 2019; 11: 2735 3b Pässler U, Knölker H.-J. The Pyrrolo[2,1-a]isoquinoline Alkaloids. In The Alkaloids: Chemistry and Biology, Vol. 70 . Knölker H.-J. Academic Press; London: 2011: 79-151 3c Cui H.-L. Org. Biomol. Chem. 2022; 20: 2779 4a Guan Z.-H, Li L, Ren Z.-H, Li J, Zhao M.-N. Green. Chem. 2011; 13: 1664 4b Ghabraie E, Balalaie S, Bararjanian M, Bijanzadeh HR, Rominger F. Tetrahedron 2011; 67: 5415 4c Cai Q, Li D.-K, Zhou R.-R, Shu W.-M, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 1342 4d Mangalaraj S, Ramanathan CR. RSC Adv. 2012; 2: 12665 4e Meshram HM, Babu BM, Kumar S, Thakur PB, Bangade VM. Tetrahedron Lett. 2013; 54: 2296 4f Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674 5a Ploypradith P, Mahidol C, Sahakitpichan P, Wongbundit S, Ruchirawat S. Angew. Chem. Int. Ed. 2004; 43: 866 5b Korotaev VY, Sosnovskikh VY, Barkov AY, Slepukhin PA, Ezhikova MA, Kodess MI, Shklyaev YV. Tetrahedron 2011; 67: 8685 5c Boonya-udtayan S, Yotapan N, Woo C, Bruns CJ, Ruchirawat S, Thasana N. Chem. Asian J. 2010; 5: 2113 5d Ploypradith P, Petchmanee T, Sahakitpichan P, Litvinas ND, Ruchirawat S. J. Org. Chem. 2006; 71: 9440 6 Nevskaya AA, Matveeva MD, Borisova TN, Niso M, Colabufo NA, Boccarelli A, Purgatorio R, de Candia M, Cellamare S, Voskressensky LG, Altomare CD. ChemMedChem 2018; 13: 1588 7a Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171 7b Koohgard M, Hosseinpour Z, Hosseini-Sarvari M. Tetrahedron 2021; 89: 132166 7c Firoozi S, Hosseini-Sarvari M, Koohgard M. Green Chem. 2018; 20: 5540 7d Wang H.-T, Lu C.-D. Tetrahedron Lett. 2013; 54: 3015 8a Feng C, Su J.-H, Yan Y, Guo F, Wang Z. Org. Biomol. Chem. 2013; 11: 6691 8b Xie ZY, Li F, Niu L, Li HB, Zheng JC, Han RJ, Ju Z, Li SS, Li D. Org. Biomol. Chem. 2020; 18: 6889 8c Xu Y.-W, Wang J, Wang G, Zhen L. J. Org. Chem. 2021; 86: 91 9a Tóth J, Váradi L, Dancsó A, Blaskó G, Tőke L, Nyerges M. Synlett 2007; 1259 9b Tóth J, Váradi L, Dancsó A, Blaskó G, Tőke L, Nyerges M. Synthesis 2009; 4149 10a Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897 10b Zheng K.-L, Zhuang S, You M.-Q, Shu W.-M, Wu A.-X, Wu Y.-D. ChemistrySelect 2017; 2: 10762 10c Shang Z.-H, Zhang X.-J, Li Y.-M, Wu R.-X, Zhang H.-R, Qin L.-Y, Ni X, Yan Y, Wu A.-X, Zhu Y.-P. J. Org. Chem. 2021; 86: 15733 10d Zhu Z, Chandak HS, Seidel D. Org. Lett. 2018; 20: 4090 10e Zhu Z, Lv X, Anesini J, Seidel D. Org. Lett. 2017; 19: 6424 10f Mantelingu K, Lin Y, Seidel D. Org. Lett. 2014; 16: 5910 11 Zheng K.-L, You M.-Q, Shu W.-M, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 2262 12a Hazra A, Mondal S, Maity A, Naskar S, Saha P, Paira R, Sahu KB, Paira P, Ghosh S, Sinha C, Samanta A, Banerjee S, Mondal NB. Eur. J. Med. Chem. 2011; 46: 2132 12b An J, Yang Q.-Q, Wang Q, Xiao W.-J. Tetrahedron Lett. 2013; 54: 3834 12c Krishnan J, Vedhanarayanan B, Sasidhar BS, Varughese S, Nair V. Chem. Asian J. 2017; 12: 623 12d Liu Y, Sun J.-W. J. Org. Chem. 2012; 77: 1191 12e Dumitrascu F, Georgescu E, Georgescu F, Popa MM, Dumitrescu D. Molecules 2013; 18: 2653 12f Yang Y, Gao M, Zhang D.-X, Wu L.-M, Shu W.-M, Wu A.-X. Tetrahedron 2012; 68: 7338 12g Zhou W, Liu H, Guo Y, Gu Y, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. J. Fluorine Chem. 2019; 222-223: 51 12h Wang W, Han J, Sun J, Liu Y. J. Org. Chem. 2017; 82: 2835 12i Liu Y, Hu H, Zhou J, Wang W, He Y, Wang C. Org. Biomol. Chem. 2017; 15: 5016 13a Muthusaravanan S, Perumal S, Yogeeswari P, Sriram D. Tetrahedron Lett. 2010; 51: 6439 13b Manjappa KB, Jhang J.-W, Lakshmi KC. S, Yang D.-Y. Asian J. Org. Chem. 2022; 11: e202100659 13c Manjappa KB, Lin J.-M, Yang D.-Y. J. Org. Chem. 2017; 82: 7648 13d Manjappa KB, Syu J.-R, Yang D.-Y. Org. Lett. 2016; 18: 332 14a Cui H.-L, Liu S.-W, Xiao X. J. Org. Chem. 2020; 85: 15382 14b Xiao X, Chen X.-H, Wang X.-X, Li W.-Z, Cui H.-L. Synthesis 2022; 54: 2019 For our efforts on the synthesis of pyrrolo[2,1-a]isoquinolines, see: 15a Cui H.-L, Jiang L, Tan H, Liu S. Adv. Synth. Catal. 2019; 361: 4772 15b Liu S.-W, Ma D.-D, Zhu X.-X, Luo C.-D, Tan H.-L, Ju X.-L, Tan X, Tang X.-H, Huang J, Wang J, Wang X.-X, Cui H.-L. Asian J. Org. Chem. 2020; 9: 1617 15c Tang X, Gao Y.-J, Deng H.-Q, Lei J.-J, Liu S.-W, Zhou L, Shi Y, Liang H, Qiao J, Guo L, Han B, Cui H.-L. Org. Biomol. Chem. 2018; 16: 3362 15d Tang X, Yang M.-C, Ye C, Liu L, Zhou H.-L, Jiang X.-J, You X.-L, Han B, Cui H.-L. Org. Chem. Front. 2017; 4: 2128 15e Liu S.-W, Gao Y.-J, Shi Y, Zhou L, Tang X, Cui H.-L. J. Org. Chem. 2018; 83: 13754 16 Yang M.-C, Tang X, Liu S.-W, Deng H.-Q, Lei J.-J, Gao Y.-J, Han B, Cui H.-L. Tetrahedron Lett. 2018; 59: 138 For selected reviews on iron catalysis, see: 17a Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730 17b Bolm C, Legros J, Paih LL, Zani L. Chem. Rev. 2004; 104: 6217 17c Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293 17d Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086 17e Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymomd S, Guérinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761 17f Kyne SH, Lefèvre G, Ollivier C, Petit M, Cladera V.-AR, Fensterbank L. Chem. Soc. Rev. 2020; 49: 8501 17g Gopalaiah K. Chem. Rev. 2013; 113: 3248 17h Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170 For selected examples on the synthesis of pyrrolo[2,1-a]isoquinolines through oxidative 1,3-dipolar cycloaddition, see: 18a Yu C, Zhang Y, Zhang S, Li H, Wang W. Chem. Commun. 2011; 47: 1036 18b Huang H.-M, Li Y.-J, Ye Q, Yu W.-B, Han L, Jia J.-H, Gao J.-R. J. Org. Chem. 2014; 79: 1084 18c Nekkanti S, Kumar NP, Sharma P, Kamal A, Nachtigall FM, Forero-Doria O, Santos LS, Shankaraiah N. RSC Adv. 2016; 6: 2671 18d Fujiya A, Tanaka M, Yamaguchi E, Tada N, Itoh A. J. Org. Chem. 2016; 81: 7262 18e Vila C, Lau J, Rueping M. Beilstein J. Org. Chem. 2014; 10: 1233 18f Huang L, Zhao J. Chem. Commun. 2013; 49: 3751 18g Quan Y, Li Q.-Y, Zhang Q, Zhang W.-Q, Lu H, Yu J.-H, Chen J, Zhao X, Wang X.-J. RSC Adv. 2016; 6: 23995 For selected examples on the synthesis of pyrrolo[2,1-a]isoquinolines through multicomponent reaction, see: 19a Tao L, Xu Z, Han J, Deng H, Shao M, Chen J, Zhang H, Cao W. Synthesis 2016; 48: 4228 19b Chen R, Zhao Y, Sun H, Shao Y, Xu Y, Ma M, Ma L, Wan X. J. Org. Chem. 2017; 82: 9291 19c Yang Z, Lu N, Wei Z, Cao J, Liang D, Duan H, Lin Y. J. Org. Chem. 2016; 81: 11950 19d Aminkhani A, Sharifi S. Lett. Org. Chem. 2022; 19: 244 19e Verma AK, Jha RR, Chaudhary R, Tiwari RK, Reddy KS. K, Danodia A. J. Org. Chem. 2012; 77: 8194 20 CCDC 2122680 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. 21a Li J.-Q, Chen X.-H, Cui H.-L. J. Org. Chem. 2022; 87: 2421 21b Li J.-Q, Tan H.-L, Ma D.-D, Zhu X.-X, Cui H.-L. J. Org. Chem. 2021; 86: 10118 22 Costa M, Noro Jr, Brito A, Proença F. Synlett 2013; 24: 2255 23 CCDC 2117618 (8) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. 24 General Procedure for the Synthesis of Compounds 3 A suspension of tetrahydroisoquinoline hydrochloride 4 (0.3 mmol), arylacyl bromide 5 (0.3 mmol), nitroolefin 2 (0.2 mmol), FeCl3·6H2O (10 mol%), and K2CO3 (0.4 mmol) in PhCl (2 mL) was stirred at 120 °C for the indicated reaction time shown in the text under air atmosphere. Then the reaction mixture was cooled to rt and purified directly by a silica gel flash chromatography (hexane/EtOAc) to afford compound 3. Analytical Data for Typical CompoundsCompound 3a Yellow solid, 40.2 mg, 49% yield; purified by a silica gel flash chromatography (hexane/EtOAc = 9/1). 1H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.3 Hz, 2 H), 7.21 (t, J = 7.4 Hz, 1 H), 7.12 (s, 1 H), 7.10–6.97 (m, 7 H), 6.78 (s, 1 H), 6.58 (s, 1 H), 4.55 (t, J = 6.8 Hz, 2 H), 3.94 (s, 3 H), 3.94 (s, 3 H), 3.10 (t, J = 6.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 187.6, 149.1, 148.3, 139.1, 135.9, 135.6, 135.5, 131.4, 129.9, 129.4, 127.5, 127.4, 127.3, 126.1, 125.3, 120.5, 111.1, 107.1, 105.3, 56.1, 56.0, 42.9, 28.7. ESI-HRMS: m/z calcd for C27H24NO3 + [M + H]+: 410.1751; found: 410.1758. Compound 3f Yellow solid, 49.5 mg, 60% yield; purified by a silica gel flash chromatography (hexane/EtOAc = 9/1). 1H NMR (400 MHz, CDCl3): δ = 7.69 (d, J = 7.5 Hz, 2 H), 7.33 (t, J = 7.4 Hz, 1 H), 7.19 (t, J = 7.6 Hz, 2 H), 7.11 (s, 1 H), 7.02 (d, J = 5.0 Hz, 1 H), 6.77 (s, 1 H), 6.67–6.62 (m, 1 H), 6.59 (s, 1 H), 6.54 (d, J = 3.3 Hz, 1 H), 4.45 (t, J = 6.7 Hz, 2 H), 3.95 (s, 3 H), 3.93 (s, 3 H), 3.07 (t, J = 6.7 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 187.5, 149.1, 148.4, 139.2, 137.4, 135.5, 131.8, 129.7, 127.7, 127.6, 127.2, 126.9, 125.2, 124.8, 120.3, 111.0, 107.0, 105.8, 56.1, 56.0, 43.1, 28.7. ESI-HRMS: m/z calcd for C25H22NO3S+ [M + H]+: 416.1315; found: 416.1320. Compound 3i Yellow solid, 66.5 mg, 75% yield; purified by a silica gel flash chromatography (hexane/EtOAc = 9/1). 1H NMR (400 MHz, CDCl3): δ = 7.51–7.46 (m, 2 H), 7.12 (s, 1 H), 7.05 (s, 5 H), 7.03–6.99 (m, 2 H), 6.78 (s, 1 H), 6.58 (s, 1 H), 4.55 (t, J = 6.8 Hz, 2 H), 3.94 (s, 3 H), 3.94 (s, 3 H), 3.10 (t, J = 6.7 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 186.1, 149.2, 148.4, 137.7, 137.6, 136.0, 135.9, 135.7, 131.3, 129.5, 127.74, 127.68, 127.0, 126.5, 125.5, 120.4, 111.1, 107.1, 105.5, 56.2, 56.1, 43.0, 28.7. ESI-HRMS: m/z calcd for C27H23ClNO3 + [M + H]+: 444.1361; found: 444.1369. Supplementary Material Supplementary Material Supporting Information