Klin Monbl Augenheilkd 2022; 239(09): 1094-1100
DOI: 10.1055/a-1914-2828
Übersicht

Der Intraokulardruck nach Netzhauteingriffen

Article in several languages: deutsch | English
Constance Weber
Universitäts-Augenklinik, Universitätsklinikum Bonn, Deutschland
,
Raffael Liegl
Universitäts-Augenklinik, Universitätsklinikum Bonn, Deutschland
,
Karl Mercieca
Universitäts-Augenklinik, Universitätsklinikum Bonn, Deutschland
› Author Affiliations

Zusammenfassung

Netzhauteingriffe können zu einem erhöhten Augeninnendruck führen. Die Ursachen hierfür sind vielfältig und schließen mechanische, aber auch pharmakologische Gründe ein. Die Therapie besteht zunächst aus einer Lokaltherapie mit drucksenkenden Augentropfen. Bei unzureichendem Ansprechen sind chirurgische Eingriffe indiziert.



Publication History

Received: 18 May 2022

Accepted: 01 August 2022

Accepted Manuscript online:
01 August 2022

Article published online:
06 September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Aaberg TM, Van Horn DL. Late complications of pars plana vitreous surgery. Ophthalmology 1978; 85: 126-140
  • 2 Crittenden JJ, de Juan jr. E, Tiedeman J. Expansion of long-acting gas bubbles for intraocular use. Principles and practice. Arch Ophthalmol 1985; 103: 831-834
  • 3 Gandorfer A, Kampik A. [Expansion of intraocular gas due to reduced atmospheric pressure. Case report and review of the literature]. Ophthalmologe 2000; 97: 367-370
  • 4 Lewis H, Han D, Williams GA. Management of fibrin pupillary-block glaucoma after pars plana vitrectomy with intravitreal gas injection. Am J Ophthalmol 1987; 103: 180-182
  • 5 Ichhpujani P, Jindal A, Jay Katz L. Silicone oil induced glaucoma: a review. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1585-1593
  • 6 Grohmann C, Dimopoulos S, Bartz-Schmidt KU. et al. Surgical management of submacular hemorrhage due to n-AMD: a comparison of three surgical methods. Int J Retina Vitreous 2020; 6: 27
  • 7 Ni C, Wang WJ, Albert DM. et al. Intravitreous silicone injection. Histopathologic findings in a human eye after 12 years. Arch Ophthalmol 1983; 101: 1399-1401
  • 8 Valone jr. J, McCarthy M. Emulsified anterior chamber silicone oil and glaucoma. Ophthalmology 1994; 101: 1908-1912
  • 9 Jawad M, Khan B, Shah MA. et al. Changes of Intraocular Pressure in Vitrectomised Eyes After Removal of Silicone Oil. J Ayub Med Coll Abbottabad 2016; 28: 327-330
  • 10 Flaxel CJ, Mitchell SM, Aylward GW. Visual outcome after silicone oil removal and recurrent retinal detachment repair. Eye (Lond) 2000; 14: 834-838
  • 11 Ratanapakorn T, Thongmee W, Meethongkam K. et al. Emulsification of Different Viscosity Silicone Oil in Complicated Retinal Detachment Surgery: A Randomized Double-Blinded Clinical Trial. Clin Ophthalmol 2020; 14: 359-367
  • 12 Branisteanu DC, Moraru AD, Maranduca MA. et al. Intraocular pressure changes during and after silicone oil endotamponade (Review). Exp Ther Med 2020; 20: 204
  • 13 Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental study. Br J Ophthalmol 1973; 57: 217-238
  • 14 Pinninti UR, McPherson AR, Carvounis PE. Long-term risk of glaucoma after encircling scleral buckle. Retina 2015; 35: 1084-1086
  • 15 Mensher JH. Anterior chamber depth alteration after retinal photocoagulation. Arch Ophthalmol 1977; 95: 113-116
  • 16 Blondeau P, Pavan PR, Phelps CD. Acute pressure elevation following panretinal photocoagulation. Arch Ophthalmol 1981; 99: 1239-1241
  • 17 Birinci H, Abidinoglu MR, Oge I. Anterior chamber depth and intraocular pressure following panretinal argon laser photocoagulation for diabetic retinopathy. Ann Saudi Med 2006; 26: 73-75
  • 18 Gismondi M, Salati C, Salvetat ML. et al. Short-term effect of intravitreal injection of Ranibizumab (Lucentis) on intraocular pressure. J Glaucoma 2009; 18: 658-661
  • 19 Mathalone N, Arodi-Golan A, Sar S. et al. Sustained elevation of intraocular pressure after intravitreal injections of bevacizumab in eyes with neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1435-1440
  • 20 Soheilian M, Karimi S, Montahae T. et al. Effects of intravitreal injection of bevacizumab with or without anterior chamber paracentesis on intraocular pressure and peripapillary retinal nerve fiber layer thickness: a prospective study. Graefes Arch Clin Exp Ophthalmol 2017; 255: 1705-1712
  • 21 Bakri SJ, Moshfeghi DM, Francom S. et al. Intraocular pressure in eyes receiving monthly ranibizumab in 2 pivotal age-related macular degeneration clinical trials. Ophthalmology 2014; 121: 1102-1108
  • 22 Reina-Torres E, Wen JC, Liu KC. et al. VEGF as a Paracrine Regulator of Conventional Outflow Facility. Invest Ophthalmol Vis Sci 2017; 58: 1899-1908
  • 23 Wen JC, Reina-Torres E, Sherwood JM. et al. Intravitreal Anti-VEGF Injections Reduce Aqueous Outflow Facility in Patients with Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017; 58: 1893-1898
  • 24 Zhou Y, Zhou M, Xia S. et al. Sustained Elevation of Intraocular Pressure Associated with Intravitreal Administration of Anti-vascular Endothelial Growth Factor: A Systematic Review and Meta-Analysis. Sci Rep 2016; 6: 39301
  • 25 Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond) 2013; 27: 787-794
  • 26 Good TJ, Kimura AE, Mandava N. et al. Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol 2011; 95: 1111-1114
  • 27 Gordon DM, McLean JM, Koteen H. et al. The use of ACTH and cortisone in ophthalmology. Am J Ophthalmol 1951; 34: 1675-1686
  • 28 McLean JM. Present status of ACTH and cortisone in treatment of eye diseases. Sight Sav Rev 1951; 21: 67-68
  • 29 Yamamoto K, Yoon KD, Ueda K. et al. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Invest Ophthalmol Vis Sci 2011; 52: 9084-9090
  • 30 François J. Corticosteroid glaucoma. Ann Ophthalmol 1977; 9: 1075-1080
  • 31 Weinreb RN, Polansky JR, Kramer SG. et al. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci 1985; 26: 170-175
  • 32 Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res 1999; 18: 629-667
  • 33 Clark AF, Steely HT, Dickerson jr. JE. et al. Glucocorticoid induction of the glaucoma gene MYOC in human and monkey trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci 2001; 42: 1769-1780
  • 34 Jain A, Wordinger RJ, Yorio T. et al. Role of the alternatively spliced glucocorticoid receptor isoform GRβ in steroid responsiveness and glaucoma. J Ocul Pharmacol Ther 2014; 30: 121-127
  • 35 Espildora J, Vicuna P, Diaz E. [Cortisone-induced glaucoma: a report on 44 affected eyes (authorʼs transl)]. J Fr Ophtalmol 1981; 4: 503-508
  • 36 Fortuna E, Cervantes-Castañeda RA, Bhat P. et al. Flare-up rates with bimatoprost therapy in uveitic glaucoma. Am J Ophthalmol 2008; 146: 876-882
  • 37 Khan N, Khaleque MA, Hossain MS. et al. Comparison of trabeculectomy with mitomycin-C versus medical treatment in moderate stage of steroid induced glaucoma. Mymensingh Med J 2013; 22: 289-295
  • 38 Cairns JE. Trabeculectomy. Preliminary report of a new method. Am J Ophthalmol 1968; 66: 673-679
  • 39 Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 2012; 23: 96-104
  • 40 Sng CCA, Harasymowycz P, Barton K. Microinvasive Glaucoma Surgery. J Ophthalmol 2017; 2017: 9845018
  • 41 Scheres LMJ, Kujovic-Aleksov S, Ramdas WD. et al. XEN® Gel Stent compared to PRESERFLO MicroShunt implantation for primary open-angle glaucoma: two-year results. Acta Ophthalmol 2021; 99: e433-e440
  • 42 Shah M. Micro-invasive glaucoma surgery – an interventional glaucoma revolution. Eye Vis (Lond) 2019; 6: 29
  • 43 Aref AA, Gedde SJ, Budenz DL. Glaucoma Drainage Implant Surgery. Dev Ophthalmol 2017; 59: 43-52
  • 44 Pereira ICF, van de Wijdeven R, Wyss HM. et al. Conventional glaucoma implants and the new MIGS devices: a comprehensive review of current options and future directions. Eye (Lond) 2021; 35: 3202-3221
  • 45 Lee RMH, Bouremel Y, Eames I. et al. Translating Minimally Invasive Glaucoma Surgery Devices. Clin Transl Sci 2020; 13: 14-25
  • 46 Gedde SJ, Schiffman JC, Feuer WJ. et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol 2012; 153: 789-803.e2
  • 47 Vallabh NA, Mason F, Yu JTS. et al. Surgical technique, perioperative management and early outcome data of the PAUL® glaucoma drainage device. Eye (Lond) 2021;
  • 48 Qin VL, Kaleem M, Conti FF. et al. Long-term Clinical Outcomes of Pars Plana Versus Anterior Chamber Placement of Glaucoma Implant Tubes. J Glaucoma 2018; 27: 440-444
  • 49 Rososinski A, Wechsler D, Grigg J. Retrospective review of pars plana versus anterior chamber placement of Baerveldt glaucoma drainage device. J Glaucoma 2015; 24: 95-99