Synthesis 2022; 54(22): 4864-4882
DOI: 10.1055/a-1921-0698
short review

Visible-Light-Induced Iron Group Metal Catalysis: Recent Developments in Organic Synthesis

Changzhen Yin
,
Miao Wang
,
Zhenxi Cai
,
Bojun Yuan
,
Peng Hu
We would like to thank financial support from Guangdong Science and Technology Department (no. 2019QN01L151) and Sun Yat-Sen University.


Abstract

One central research goal for modern organic chemistry in society is to develop sustainable synthetic methodologies. Visible-light-induced transformations that apply earth-abundant metals as catalysts are a good reply to this concern. In this short review, recent developments of organic photocatalysis applying iron group metal catalysts (Fe, Co, Ni) are discussed. Reaction types, the catalyst details, and mechanisms are introduced.

1 Introduction

2 Visible-Light-Induced Fe-Catalyzed Reactions

3 Visible-Light-Induced Co-Catalyzed Reactions

4 Visible-Light-Induced Ni-Catalyzed Reactions

5 Summary



Publication History

Received: 09 June 2022

Accepted after revision: 08 August 2022

Accepted Manuscript online:
08 August 2022

Article published online:
22 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 2 Larsen CB, Wenger OS. Chem. Eur. J. 2018; 24: 2039
    • 3a Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 3b Traub L, Reiser O. Phys. Sci. Rev. 2019; 4: 20170172
    • 3c Hockin BM, Li CF, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
    • 3d Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
    • 3e Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170
    • 3f Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
    • 3g Cheung KP. S, Sarkar S, Gecorgyan V. Chem. Rev. 2022; 122: 1543
  • 4 Wenger OS. Chem. Eur. J. 2019; 25: 6043
    • 5a Chen J, Browne WR. Coord. Chem. Rev. 2018; 374: 15
    • 5b Chábera P, Lindh L, Rosemann NW, Prakash O, Uhlig J, Yartsev A, Wärnmark K, Sundström V, Persson P. Coord. Chem. Rev. 2021; 426: 213517
    • 6a Kjær KS, Kaul N, Prakash O, Chábera P, Rosemann NW, Honarfar A, Gordivska O, Fredin LA, Bergquist K.-E, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K. Science 2019; 363: 249
    • 6b Kyne SH, Lefevre G, Ollivier C, Petit M, Cladera V.-AR, Fensterbank L. Chem. Soc. Rev. 2020; 49: 8501
    • 6c Jang YJ, An H, Choi S, Hong J, Lee SH, Ahn K.-H, You Y, Kang EJ. Org. Lett. 2022; 24: 4479
    • 6d Parker CA. Proc. R. Soc. London A 1953; 220: 104
    • 7a Zhou WJ, Wu XD, Miao M, Wang ZH, Chen L, Shan SY, Cao GM, Yu DG. Chem. Eur. J. 2020; 26: 15052
    • 7b Lindroth R, Onedrejková A, Wallentin C. Org. Lett. 2022; 24: 1662
  • 8 Xie ZG, Li PH, Hu Y, Xu N, Wang L. Org. Biomol. Chem. 2017; 15: 4205
  • 9 Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org. Chem. Front. 2018; 5: 380
  • 10 Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15416
  • 11 Huang B, Li Y, Yang C, Xia W. Green Chem. 2020; 22: 2804
    • 12a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 12b Gualandi A, Marchini M, Mengozzi L, Natali M, Lucarini M, Ceroni P, Cozzi PG. ACS Catal. 2015; 5: 5927
  • 13 Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
  • 14 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
  • 15 Xia S, Hu K, Lei C, Jin J. Org. Lett. 2020; 22: 1385
  • 16 Tang J.-J, Yu X, Wang Y, Yamamoto Y, Bao M. Angew. Chem. Int. Ed. 2021; 60: 16426
  • 17 Tang J.-J, Yu X, Yamamoto Y, Bao M. ACS Catal. 2021; 11: 13955
    • 18a Shulpin GB, Kats MM. React. Kinet. Catal. Lett. 1990; 41: 239
    • 18b Takaki K, Yamamoto J, Komeyama K, Kawabata T, Takehira K. Bull. Chem. Soc. Jpn. 2004; 77: 2251
    • 18c Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
    • 19a Jin Y, Zhang Q, Wang L, Wang X, Meng C, Duan C. Green Chem. 2021; 23: 6984
    • 19b Jin Y, Wang L, Zhang Q, Zhang Y, Liao Q, Duan C. Green Chem. 2021; 23: 9406
    • 19c Kang YC, Treacy SM, Rovis T. Synlett 2021; 32: 1767
    • 19d Ding L, Niu K, Liu Y, Wang Q. ChemSusChem 2022; 15: e202200367
  • 20 Kang YC, Treacy SM, Rovis T. ACS Catal. 2021; 11: 7442
    • 21a Russell GA. J. Am. Chem. Soc. 1957; 79: 2977
    • 21b Russell GA. J. Am. Chem. Soc. 1958; 80: 4987
    • 21c Yang Q, Wang Y.-H, Qiao Y, Gau M, Carroll PJ, Walsh PJ, Schelter EJ. Science 2021; 372: 847
  • 22 Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2022; 144: 1464
  • 23 Zhang Z, Zhang G, Xiong N, Xue T, Zhang J, Bai L, Guo Q, Zeng R. Org. Lett. 2021; 23: 2915
    • 24a Zhang G, Zhang Z, Zeng R. Chin. J. Chem. 2021; 39: 3225
    • 24b Wang M, Wen L, Huang Y, Hu P. ChemSusChem 2021; 14: 5049
    • 24c Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
  • 25 Liu W, Wu Q, Wang M, Huang Y, Hu P. Org. Lett. 2021; 23: 8413
  • 26 Xiong N, Li Y, Zeng R. Org. Lett. 2021; 23: 8968
  • 27 Wei X.-J, Abdiaj I, Sambiagio C, Li C, Zysman-Colman E, Alcázar J, Noël T. Angew. Chem. Int. Ed. 2019; 58: 13030
  • 28 Pal AK, Li CF, Hanan GS, Zysman-Colman E. Angew. Chem. Int. Ed. 2018; 57: 8027
  • 29 Liu W.-Q, Lei T, Zhou S, Yang X.-L, Li J, Chen B, Sivaguru J, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2019; 141: 13941
  • 30 Lei T, Liang G, Cheng Y.-Y, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2020; 22: 5385
    • 31a Wdowik T, Gryko D. ACS Catal. 2022; 12: 6517
    • 31b Ociepa M, Baka O, Narodowiec J, Gryko D. Adv. Synth. Catal. 2017; 359: 3560
    • 31c Ociepa M, Wierzba AJ, Turkowska J, Gryko D. J. Am. Chem. Soc. 2020; 142: 5355
    • 31d Komeyama K, Michiyuki T, Teshima Y, Osaka I. RSC Adv. 2021; 11: 3539
    • 31e Smoleń S, Wincenciuk A, Drapała O, Gryko D. Synthesis 2021; 53: 1645
  • 32 Ruhl KE, Rovis T. J. Am. Chem. Soc. 2016; 138: 15527
  • 33 Ravetz BD, Wang JY, Ruhl KE, Rovis T. ACS Catal. 2019; 9: 200
  • 35 Grübel M, Bosque I, Altmann PJ, Bach T, Hess CR. Chem. Sci. 2018; 9: 3313
  • 36 Mandal T, Das S, De Sarkar S. Adv. Synth. Catal. 2019; 361: 3200
  • 37 Tian Y.-M, Guo X.-N, Krummenacher I, Wu Z, Nitsch J, Braunschweig H, Radius U, Marder TB. J. Am. Chem. Soc. 2020; 142: 18231
  • 38 Li S, Xie Z. J. Am. Chem. Soc. 2022; 144: 7960
  • 39 Shen X, Li YJ, Wen ZR, Cao S, Hou XY, Gong L. Chem. Sci. 2018; 9: 4562
  • 40 Hou H, Zhou B, Wang J, Zhao D, Sun D, Chen X, Han Y, Yan C, Shi Y, Zhu S. Org. Lett. 2021; 23: 2981
  • 41 Lim CH, Kudisch M, Liu B, Miyake GM. J. Am. Chem. Soc. 2018; 140: 7667
  • 42 Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
    • 43a Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
    • 43b Kariofillis SK, Doyle AG. Acc. Chem. Res. 2021; 54: 988
  • 44 Yang L, Lu HH, Lai CH, Li G, Zhang W, Cao R, Liu F, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2020; 59: 12714
  • 45 Li G, Yang L, Liu JJ, Zhang W, Cao R, Wang C, Zhang Z, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 5230
  • 46 Song G, Yang L, Li J.-S, Tang W.-J, Zhang W, Cao R, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2021; 60: 21536
  • 47 Deolka S, Govindarajan R, Khasin E, Fayzullin RR, Roy MC, Khusnutdinova JR. Angew. Chem. Int. Ed. 2021; 60: 24620
  • 48 Abdiaj I, Fontana A, Gomez MV, de la Hoz A, Alcázar J. Angew. Chem. Int. Ed. 2018; 57: 8473
  • 49 Ding W, Lu L.-Q, Zhou Q.-Q, Wei Y, Chen J.-R, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 63