Synthesis 2023; 55(02): 297-306 DOI: 10.1055/a-1921-8664
paper
Special Issue dedicated to Prof. Alain Krief
Crystal Structures of Organoselenium Compounds: Structural Descriptors for Chalcogen Bonds
Laurie Bodart
,
Johan Wouters∗
Authors thank the Fonds National de la Recherche Scientifique (FNRS), Belgium, for financial support.
Abstract
Less conventional non-covalent interactions such as chalcogen bonds attract the attention of researchers in various fields (organocatalysis, material sciences, biological chemistry, …). We present here useful descriptors to easily discriminate the structures in which chalcogen bonds involving selenium are observed. Our study focused on organoselenium compounds as chalcogen bond donors and on molecular entities, as chalcogen bond acceptors, containing N, O, S, Se, and Te atoms or aromatic rings. For conventional chalcogen bonds (C–Se⋯X, with X = N, O, S, Se, or Te), the combination of the C–Se⋯X angle and the distance between X and the C–Se-C plane proved to be most relevant for identification of chalcogen bonds. For chalcogen⋯π bonds, the most relevant parameters are a combination of the C–Se⋯X angle and the angle between the C–Se bond and the normal to the aromatic ring plane.
Key words
organoselenated compounds -
chalcogen bond -
CSD search -
crystal structure -
geometric descriptors -
chalcogen-pi interactions
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1921-8664.
Supporting Information
Publication History
Received: 05 July 2022
Accepted: 09 August 2022
Accepted Manuscript online: 09 August 2022
Article published online: 13 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Desiraju GR,
Steiner T.
The Weak Hydrogen Bond: In Structural Chemistry and Biology (International Union of Crystallography Monographs on Crystallography), Vol. 9. Oxford University Press; Oxford: 2001
2
Scheiner S.
Phys. Chem. Chem. Phys. 2021; 23: 5702
3
Brammer L.
Faraday Discuss. 2017; 203: 485
4
Cavallo G,
Metrangolo P,
Milani R,
Pilati T,
Priimagi A,
Resnati G,
Terraneo G.
Chem. Rev. 2016; 116: 2478
5
Wang W,
Ji B,
Zhang Y.
J. Phys. Chem. A 2009; 113: 8132
6
Politzer P,
Murray JS.
Crystals 2019; 9: 165
7
Murray JS,
Lane P,
Clark T,
Politzer P.
J. Mol. Model. 2007; 13: 1033
8
Aakeroy CB,
Bryce DL,
Desiraju GR,
Frontera A,
Legon AC,
Nicotra F,
Rissanen K,
Scheiner S,
Terraneo G,
Metrangolo P.
Pure Appl. Chem. 2019; 91: 1889
9
Biot N,
Bonifazi D.
Coord. Chem. Rev. 2020; 413: 213243
10
Chivers T,
Laitinen RS.
Chalcogen-Nitrogen Chemistry: From Fundamentals To Applications In Biological, Physical And Materials Sciences (Updated Edition). World Scientific; Singapore: 2021
11
Iwaoka M,
Takemoto S,
Tomoda S.
J. Am. Chem. Soc. 2002; 124: 10613
12
Politzer P,
Murray JS,
Clark T.
Phys. Chem. Chem. Phys. 2013; 15: 11178
13
Politzer P,
Murray JS.
In Practical Aspects of Computational Chemistry.
Leszczynski J,
Shukla M.
Springer; Berlin: 2009: 149-163
14
Mahmudov KT,
Kopylovich MN,
da Silva MF. C. G,
Pombeiro AJ.
Dalton Transact. 2017; 46: 10121
15
Murray JS,
Lane P,
Politzer P.
J. Mol. Model. 2009; 15: 723
16
Haberhauer G,
Gleiter R.
Angew. Chem. Int. Ed. 2020; 59: 21236
17
Pascoe DJ,
Ling KB,
Cockroft SL.
J. Am. Chem. Soc. 2017; 139: 15160
18
de Azevedo Santos L,
van Der Lubbe SC,
Hamlin TA,
Ramalho TC,
Bickelhaupt MF.
ChemistryOpen 2021; 10: 391
19
Scilabra P,
Terraneo G,
Resnati G.
Acc. Chem. Res. 2019; 52: 1313
20
Varadwaj PR.
Molecules 2019; 24: 3166
21
Varadwaj PR,
Varadwaj A,
Marques HM,
MacDougall PJ.
Phys. Chem. Chem. Phys. 2019; 21: 19969
22
Lundemba AS,
Bibelayi DD,
Tsalu PV,
Wood PA,
Cole J,
Kayembe JS,
Yav ZG.
Cryst. Struct. Theory Appl. 2021; 10: 57
23
Daolio A,
Scilabra P,
Di Pietro ME,
Resnati C,
Rissanen K,
Resnati G.
New J. Chem. 2020; 44: 20697
24
Kříž K,
Fanfrlík J,
Lepšík M.
ChemPhysChem 2018; 19: 2540
25
Kozlova A,
Thabault L,
Dauguet N,
Deskeuvre M,
Stroobant V,
Pilotte L,
Liberelle M,
Van den Eynde B,
Frédérick R.
Eur. J. Med. Chem. 2022; 227: 113892
26
Bamberger J,
Ostler F,
Mancheño OG.
ChemCatChem 2019; 11: 5198
27
Benz S,
López-Andarias J,
Mareda J,
Sakai N,
Matile S.
Angew. Chem. Int. Ed. 2017; 56: 812
28
Wonner P,
Dreger A,
Vogel L,
Engelage E,
Huber SM.
Angew. Chem. Int. Ed. 2019; 58: 16923
29
Wang W,
Zhu H,
Feng L,
Yu Q,
Hao J,
Zhu R,
Wang Y.
J. Am. Chem. Soc. 2020; 142: 3117
30
Oyama T,
Yang YS,
Matsuo K,
Yasuda T.
Chem. Commun. 2017; 53: 3814
31
Shi S,
Tang L,
Guo H,
Uddin MA,
Wang H,
Yang K,
Liu B,
Wang Y,
Sun H,
Woo HY.
Macromolecules 2019; 52: 7301
32
Pati PB,
Zade SS.
Cryst. Growth Des. 2014; 14: 1695
33
Chen L,
Xiang J,
Zhao Y,
Yan Q.
J. Am. Chem. Soc. 2018; 140: 7079
34
Riwar LJ,
Trapp N,
Root K,
Zenobi R,
Diederich F.
Angew. Chem. Int. Ed. 2018; 57: 17259
35
Ho PC,
Tomassetti V,
Britten JF,
Vargas-Baca I.
Inorg. Chem. 2021; 60: 16726
36
Zhu Y.-J,
Gao Y,
Tang M.-M,
Rebek J,
Yu Y.
Chem. Commun. 2021; 57: 1543
37
Ho PC,
Wang JZ,
Meloni F,
Vargas-Baca I.
Coord. Chem. Rev. 2020; 422: 213464
38
Alcock N.-W.
Secondary Bonding to Nonmetallic Elements. In Advances in Inorganic Chemistry and Radiochemistry, Vol. 15.
Emeléus HJ,
Sharpe AG.
Elsevier; Amsterdam: 1972: 1-58
39
Vogel L,
Wonner P,
Huber SM.
Angew. Chem. Int. Ed. 2019; 58: 1880
40
Biswal HS,
Sahu AK,
Galmés B,
Frontera A,
Chopra D.
ChemBioChem 2022; 23: e202100498
41
Bauzá A,
Quinonero D,
Deya PM,
Frontera A.
CrystEngComm 2013; 15: 3137
42
Carugo O,
Resnati G,
Metrangolo P.
ACS Chem. Biol. 2021; 16: 1622
43
Bauzá A,
Mooibroek TJ,
Frontera A.
ChemPhysChem 2015; 16: 2496
44
Tiekink ER.
Coord. Chem. Rev. 2022; 457: 214397
45
Bruno IJ,
Cole JC,
Lommerse JP,
Rowland RS,
Taylor R,
Verdonk ML.
J. Comput. Aided Mol. Des. 1997; 11: 525
46
Bruno IJ,
Cole JC,
Edgington PR,
Kessler M,
Macrae CF,
McCabe P,
Pearson J,
Taylor R.
Acta Crystallogr., Sect. B 2002; 58: 389
47
Groom CR,
Bruno IJ,
Lightfoot MP,
Ward SC.
Acta Crystallogr., Sect B 2016; 72: 171
48
Adhav VA,
Shelke SS,
Balanarayan P,
Saikrishnan K.
bioRxiv 2022; preprint
49
Kumar V,
Triglav M,
Morin VM,
Bryce DL.
ACS Org. Inorg. Au 2022; 2: 252
50
Xu Y,
Szell PM,
Kumar V,
Bryce DL.
Coord. Chem. Rev. 2020; 411: 213237
51
Viger-Gravel J,
Leclerc S,
Korobkov I,
Bryce DL.
J. Am. Chem. Soc. 2014; 136: 6929
52
Cerreia Vioglio P,
Catalano L,
Vasylyeva V,
Nervi C,
Chierotti MR,
Resnati G,
Gobetto R,
Metrangolo P.
Chem. Eur. J. 2016; 22: 16819
53
Etter MC,
MacDonald JC,
Bernstein J.
Acta Crystallogr., Sect. B 1990; 46: 256
54
Wouters J.
J. Comput. Chem. 2000; 21: 847
55
Saha A,
Saha BK.
Cryst. Growth Des. 2019; 19: 7264
56
Sedlak R,
Eyrilmez SM,
Hobza P,
Nachtigallova D.
Phys. Chem. Chem Phy. 2018; 20: 299
57
Bondi A.
J. Phys. Chem. 1964; 68: 441
58
Krief A,
Hevesi L.
Organoselenium Chemistry I: Functional Group Transformations. Springer; Berlin: 2012